期刊文献+
共找到3,607篇文章
< 1 2 181 >
每页显示 20 50 100
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
1
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 al/cfs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Effect of Ni content on the wear behavior of Al-Si-Cu-Mg-Ni/SiC particles composites
2
作者 Yanyu Liu Lina Jia +2 位作者 Wenbo Wang Zuheng Jin Hu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期374-383,共10页
In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composi... In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃. 展开更多
关键词 al matrix composite microstructure sliding test high temperature wear mechanism
下载PDF
Damping properties and mechanism of aluminum matrix composites reinforced with glass cenospheres
3
作者 Kai SUN Lin WANG +5 位作者 Hang SU Jia-yi GENG Qiang ZHANG Bo MENG Zeng-yan WEI Gao-hui WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2743-2755,共13页
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ... The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites. 展开更多
关键词 glass cenospheres al matrix composites MICROSTRUCTURE low-frequency damping properties
下载PDF
Microstructure Regulation and Combustion Performance Optimization of PVDF/Al Composite Powder by Non-covalent Functionalized Graphenes
4
作者 易卓然 DENG Haoyuan +2 位作者 QIN Mei 孙一 LUO Guoqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期904-911,共8页
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the... Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state. 展开更多
关键词 energetic materials PVDF/al composites graphene modification energy release combustion
下载PDF
Microstructure,interfacial reaction behavior,and mechanical properties of Ti_3AlC_(2)reinforced Al6061 composites
5
作者 Zhi-bin LIU Jia-bao BAO +1 位作者 Wen-jie HU Hong YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2756-2771,共16页
The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add... The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%. 展开更多
关键词 al6061 composites TI3alC2 MICROSTRUCTURE interfacial reaction tensile mechanical properties
下载PDF
Microstructure evolution,mechanical properties and fracture behavior of Al-xSi/AZ91D bimetallic composites prepared by a compound casting
6
作者 Guangyu Li Wenming Jiang +3 位作者 Feng Guan Junwen Zhu Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1944-1964,共21页
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically... In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL. 展开更多
关键词 al/Mg bimetallic composites Si content Mg_(2)Si reinforcement Microstructure Mechanical properties Fracture behavior
下载PDF
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:3
7
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/al composite interlayer mechanical property
下载PDF
Tuning energy output of PTFE/Al composite materials through gradient structure 被引量:1
8
作者 Yao-feng Mao Qian-qian He +3 位作者 Jian Wang Chuan-hao Xu Jun Wang Fu-de Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期134-142,共9页
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi... As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al. 展开更多
关键词 PTFE/al composite Gradient structure Radial gradient Pressure output
下载PDF
Evaluation of microstructure and mechanical properties of squeeze overcast Al7075-Cu composite joints 被引量:1
9
作者 Muhammad Waqas Hanif Ahmad Wasim +3 位作者 Muhammad Sajid Salman Hussain Muhammad Jawad Mirza Jahanzaib 《China Foundry》 SCIE CAS CSCD 2023年第1期29-39,共11页
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu... Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties. 展开更多
关键词 squeeze overcast joints al7075-Cu composite joints mechanical properties gray relational analysis Taguchi method
下载PDF
Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN
10
作者 Yong Kou Yi Wang +2 位作者 Jun Zhang Kai-ge Guo Xiao-lan Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期74-87,共14页
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist... Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants. 展开更多
关键词 alUMINUM Fe/al composite fuel High reactivity Thermal decomposition AP AN
下载PDF
Hot deformation behavior and microstructure evolution of Be/2024Al composites
11
作者 Yixiao Xia Zeyang Kuang +5 位作者 Ping Zhu Boyu Ju Guoqin Chen Ping Wu Wenshu Yang Gaohui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2245-2258,共14页
The high temperature compression test of Be/2024Al composites with 62wt%Be was conducted at 500–575℃ and strain rate of0.003–0.1 s^(-1).The strain-compensated Arrhenius model and modified Johnson–Cook model were i... The high temperature compression test of Be/2024Al composites with 62wt%Be was conducted at 500–575℃ and strain rate of0.003–0.1 s^(-1).The strain-compensated Arrhenius model and modified Johnson–Cook model were introduced to predict the hot deformation behavior of Be/2024Al composites.The result shows that the activation energy of Be/2024Al composites was 363.364 k J·mol^(-1).Compared with composites reinforced with traditional ceramics,Be/2024Al composites can be deformed with ultra-high content of reinforcement,attributing to the deformable property of Be particles.The average relative error of the two models shows that modified Johnson–Cook model was more suitable for low temperature condition while strain-compensated Arrhenius model was more suitable for high temperature condition.The processing map was generated and a hot extrusion experiment was conducted according to the map.A comparation of the microstructure of Be/2024Al composites before and after extrusion shows that the Be particle deformed coordinately with the matrix and elongated at the extrusion direction. 展开更多
关键词 Be/al composites hot deformation behavior constitutive model hot extrusion
下载PDF
Oxidation mechanism of high-volume fraction SiCp/Al composite under laser irradiation and subsequent machining
12
作者 Hanliang Liu Guolong Zhao +5 位作者 Zhiwen Nian Zhipeng Huang Kai Yang Conghua Liu Peng Wang Zhenkuan Diao 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期34-47,共14页
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra... Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality. 展开更多
关键词 SiCp/al composite Oxidation mechanism Nanosecond pulsed laser Laser-induced oxidation Heat-affected zone
下载PDF
Development and Characterization of Aluminium-Based Metal Matrix Composites
13
作者 M. A. Gafur Al Fahad Ahmed +1 位作者 Raisul Abrar Surya Sabrin Soshi 《Materials Sciences and Applications》 CAS 2023年第1期1-19,共19页
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi... Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials. 展开更多
关键词 al AA-6061 AA-4032 SiC al2O3 Stir-Casting Metal Matrix composite MMC NANOcompositeS
下载PDF
RELATIONS BETWEEN INTERFACE OF CF/Al-4.5 Cu COMPOSITE AND SOLIDIFICATION PROCESSING 被引量:1
14
作者 Chu, Shuangjie Wu, Renjie 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第2期133-137,共5页
RELATIONSBETWEENINTERFACEOFCF/Al4.5CuCOMPOSITEANDSOLIDIFICATIONPROCESSING①ChuShuangjie,WuRenjieResearchInst... RELATIONSBETWEENINTERFACEOFCF/Al4.5CuCOMPOSITEANDSOLIDIFICATIONPROCESSING①ChuShuangjie,WuRenjieResearchInstituteofCompositeM... 展开更多
关键词 cf/al 4.5Cu composite INTERFACE SOLIDIFICATION COOLING rate
下载PDF
Ballistic Performance and Damage Characteristics of Chemical Vapor Infiltration Quasi 3D-Cf/SiC Composites 被引量:1
15
作者 何旭道 程兴旺 +1 位作者 wang qi wang pei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期118-122,共5页
To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducte... To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption. 展开更多
关键词 CVI-cf/SiC composites material ballistic performance damage characteristics
下载PDF
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
16
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite cf/al composite COATING WETTABILITY mechanical properties
下载PDF
Effect of specific pressure on fabrication of 2D-C_f/Al composite by vacuum and pressure infiltration 被引量:11
17
作者 马玉钦 齐乐华 +2 位作者 郑武强 周计明 鞠录岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1915-1921,共7页
Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in... Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy. 展开更多
关键词 specific pressure vacuum and pressure infiltration C/al composite carbon fiber PROPERTIES
下载PDF
Microstructural development and its effects on mechanical properties of Al/Cu laminated composite 被引量:17
18
作者 李小兵 祖国胤 王平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期36-45,共10页
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted... The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness. 展开更多
关键词 al/Cu laminated composite roll bonding INTERFACE ultra-fine grain
下载PDF
Effect of heat treatment on microstructure and thermophysical properties of diamond/2024 Al composites 被引量:6
19
作者 修子扬 王旭 +2 位作者 M.HUSSAIN 冯超 姜龙涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3584-3591,共8页
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ... 50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment. 展开更多
关键词 al matrix composites DIAMOND INTERFACE ANNEalING AGING thermal properties
下载PDF
Characterization and evaluation of interface in SiC_p/2024 Al composite 被引量:8
20
作者 柳培 王爱琴 +1 位作者 谢敬佩 郝世明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1410-1418,共9页
35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface con... 35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface conditions were evaluated by tensile modules of elasticity and Brinell hardness measurement. The results show that the overall Si Cp/Al interface condition in this experiment is good and three kinds of Si Cp/Al interfaces are present in the composites, which include vast majority of clean planer interfaces, few slight reaction interfaces and tiny amorphous interfaces. The combination mechanism of Si C and Al in the clean planer interface is the formation of a semi-coherent interface by closely matching of atoms and there are no fixed or preferential crystallographic orientation relationships between Si C and Al. MgAl2O4 spinel particles act as an intermediate to form semi-coherent interface with SiC and Al respectively at the slight reaction interfaces. When the composite is aged at 190 °C for 9 h after being solution-treated at 510 °C for 2 h, numerous discoid-shaped and needle-shaped nanosized precipitates dispersively exist in the composite and are semi-coherent of low mismatch with Al matrix. The Brinell hardness of composites arrives peak value at this time. 展开更多
关键词 SiCp/2024 al composite INTERFACE precipitate phase CHARACTERIZATION
下载PDF
上一页 1 2 181 下一页 到第
使用帮助 返回顶部