With the increase in antimicrobial resistance,it has become necessary to explore alternative approaches for combating and preventing diseases.DB-cinnamaldehyde(CNM)and Benzyl4-amino(B4AM)are bioactive compounds derive...With the increase in antimicrobial resistance,it has become necessary to explore alternative approaches for combating and preventing diseases.DB-cinnamaldehyde(CNM)and Benzyl4-amino(B4AM)are bioactive compounds derived from chalcones but with restricted solubility in aqueous media.Nanoemulsions can enhance the solubility of compounds and can be a promising alternative in the development of novel antimicrobials,with reduced side effects and prolonged release.The objective of this study was to evaluate the stability of oil-in-water nanoemulsions loaded with two distinct types of chalcones at two different dosages,to propose a stable formulation with antimicrobial properties.Results showed that nanoemulsions presented high encapsulation efficiency,low polydispersity index(PDI)and particle size below 200 nm,indicating that emulsification was a suitable method for nanoemulsion preparation.Nanoemulsions with higher dosages exhibited significant antimicrobial effects when compared to free chalcones and positive controls.Notably,B4AM nanoemulsions at higher dosages showed expressive activity against Salmonella minnesota,with a 420%greater inhibitory response compared to the free form and showing equivalence to the positive control.CNM nanoemulsions showed excellent inhibitory activity at the highest dosage,equivalent to the positive control against S.minnesota and Staphylococcus aureus.The greater number of conjugated bonds in CNM increased the antimicrobial activity in comparison with B4AM,and the formation of nanometric domains enhanced the bioavailability,being a promising alternative for antimicrobial applications.展开更多
Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synt...Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synthase shared high homology with the NSCHSL (Y14507) gene and contained most of the conserved active sites that are in CHS proteins. The phylogenetic analysis suggested that NtCHS6 protein shared a large genetic distance with other Solanaceae CHS proteins and was the most closely-related to an uncharacterized CHS from Solanum lycopersicum. The expression analysis indicated that NtCHS6 was abundantly expressed in leaves, especially in mature leaves. By scrutinizing its upstream promoter sequences, multiple cis-regulatory elements involved in light and drought responsive were detected. Furthermore, NtCHS6 expression decreased significantly under dark treatment and increased significantly under drought stress suggested that NtCHS6 expression exhibited both light responsiveness and drought responsiveness, and important roles in ultraviolet protection and drought tolerance. Our results might play展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of...Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t...Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.展开更多
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str...To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified ...Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry.展开更多
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored...Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.展开更多
Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF...Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.展开更多
The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
BACKGROUND Solitary fibrous tumors(SFT)are rare spindle cell tumors that are usually benign.A total of 10 cases of SFTs in the upper esophagus have ever been reported.Here,we report the anesthetic management of a pati...BACKGROUND Solitary fibrous tumors(SFT)are rare spindle cell tumors that are usually benign.A total of 10 cases of SFTs in the upper esophagus have ever been reported.Here,we report the anesthetic management of a patient with a large isolated fibrous tumor of the upper esophagus compressing the tracheal membrane.We also provide a literature review of the current research.CASE SUMMARY We report the case of a 49 year old male with“cough aggravation and wheezing after exercise”,who underwent esophagectomy for a large isolated fibrous tumor compressing the tracheal membrane in the upper esophagus.We advise the use of a single-lumen tube with a blocker in patients with difficult airways to reduce the incidence of airway injury and fibrinoscopy at all stages of the perioperative period to guide airway management.This case study is the first report of the anesthetic management of a large,isolated fibrous tumor compressing the tracheal membrane in the upper esophagus.CONCLUSION This rare case emphasizes the importance of perioperative management of anesthesia in patients with large isolated fibrous tumors of the upper esophagus that compress the tracheal membrane.The use of blocker reduce the incidence of airway injury and fibrinoscopy at the perioperative period to guide airway mana-gement.展开更多
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol...Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.展开更多
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif...The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.展开更多
基金supported by the National Council for Scientific Development-CNPQ/MCTI/FNDCT N18/2021,by the Concession of Research Funding Grant Number 406522/2021-9-1 to F.O.M.S.Abreu.Helcio Silva dos Santos acknowledges financial support from CNPq-PQ (Grant Number 306008/2022-0).
文摘With the increase in antimicrobial resistance,it has become necessary to explore alternative approaches for combating and preventing diseases.DB-cinnamaldehyde(CNM)and Benzyl4-amino(B4AM)are bioactive compounds derived from chalcones but with restricted solubility in aqueous media.Nanoemulsions can enhance the solubility of compounds and can be a promising alternative in the development of novel antimicrobials,with reduced side effects and prolonged release.The objective of this study was to evaluate the stability of oil-in-water nanoemulsions loaded with two distinct types of chalcones at two different dosages,to propose a stable formulation with antimicrobial properties.Results showed that nanoemulsions presented high encapsulation efficiency,low polydispersity index(PDI)and particle size below 200 nm,indicating that emulsification was a suitable method for nanoemulsion preparation.Nanoemulsions with higher dosages exhibited significant antimicrobial effects when compared to free chalcones and positive controls.Notably,B4AM nanoemulsions at higher dosages showed expressive activity against Salmonella minnesota,with a 420%greater inhibitory response compared to the free form and showing equivalence to the positive control.CNM nanoemulsions showed excellent inhibitory activity at the highest dosage,equivalent to the positive control against S.minnesota and Staphylococcus aureus.The greater number of conjugated bonds in CNM increased the antimicrobial activity in comparison with B4AM,and the formation of nanometric domains enhanced the bioavailability,being a promising alternative for antimicrobial applications.
基金supported by the Agricultural Science and Technology Innovation Program, China (ASTIP-TRIC01)
文摘Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synthase shared high homology with the NSCHSL (Y14507) gene and contained most of the conserved active sites that are in CHS proteins. The phylogenetic analysis suggested that NtCHS6 protein shared a large genetic distance with other Solanaceae CHS proteins and was the most closely-related to an uncharacterized CHS from Solanum lycopersicum. The expression analysis indicated that NtCHS6 was abundantly expressed in leaves, especially in mature leaves. By scrutinizing its upstream promoter sequences, multiple cis-regulatory elements involved in light and drought responsive were detected. Furthermore, NtCHS6 expression decreased significantly under dark treatment and increased significantly under drought stress suggested that NtCHS6 expression exhibited both light responsiveness and drought responsiveness, and important roles in ultraviolet protection and drought tolerance. Our results might play
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
基金supported by the National Natural Science Foundation of China(Nos.12272210,11872037,11872159)the Innovation Program of Shanghai Municipal Education Commission of China(No.2017-01-07-00-09-E00019)。
文摘Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金Project supported by Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515010967 and 2023A1515012821)the National Natural Science Foundation of China(Grant Nos.12002272 and 12272293)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province(Grant No.SZDKF-202101)。
文摘Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金Project supported by the National Natural Science Foundation of China(Nos.12372187,52321003,12302250)the Fundamental Research Funds for the Central Universities(Nos.KY2090000094 and WK2480000010)+2 种基金the Fellowship of China Postdoctoral Science Foundation(Nos.2024M753103 and 2023M733388)the University Synergy Innovation Program of Anhui Province(No.GXXT-2023-024)the CAS Talent Introduction Program(No.KJ2090007006)。
文摘To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金the National Natural Science Foundation of China (31871748)Natural Science Foundation of Henan Province (242300421317, 242300420462)+2 种基金the Project of Henan University of Technology Excellent Young Teachers (21420064)Zhengzhou Science and Technology Collaborative Innovation Project (21ZZXTCX17)China Postdoctoral Science Fundation (2021M701112) for the financial support。
文摘Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry.
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金supported by the National Natural Science Foundation of China[grant number 51991393]support from the Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology and Key Laboratory of Earthquake Resistance,Earthquake Mitigation,and Structural Safety funded by the Ministry of Education。
文摘Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.
基金supported by the National Natural Science Foundation of China(grant nos.81971848 and 82272287)Shanghai Municipal Key Clinical Specialty(grant no,shslczdzk00901)+2 种基金Clinical Research Plan of SHDC(rant nos.SHDC2020CR1019B and SHC2020CR402)Innovative Research Team of High-Level Local Universities in Shanghai(grant no.SSMU-ZDCX20180700)Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality(grant no.22MC1940300).
文摘Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
文摘BACKGROUND Solitary fibrous tumors(SFT)are rare spindle cell tumors that are usually benign.A total of 10 cases of SFTs in the upper esophagus have ever been reported.Here,we report the anesthetic management of a patient with a large isolated fibrous tumor of the upper esophagus compressing the tracheal membrane.We also provide a literature review of the current research.CASE SUMMARY We report the case of a 49 year old male with“cough aggravation and wheezing after exercise”,who underwent esophagectomy for a large isolated fibrous tumor compressing the tracheal membrane in the upper esophagus.We advise the use of a single-lumen tube with a blocker in patients with difficult airways to reduce the incidence of airway injury and fibrinoscopy at all stages of the perioperative period to guide airway management.This case study is the first report of the anesthetic management of a large,isolated fibrous tumor compressing the tracheal membrane in the upper esophagus.CONCLUSION This rare case emphasizes the importance of perioperative management of anesthesia in patients with large isolated fibrous tumors of the upper esophagus that compress the tracheal membrane.The use of blocker reduce the incidence of airway injury and fibrinoscopy at the perioperative period to guide airway mana-gement.
基金the European Research Council(ERC)under the ERC Synergy grant agreement No.951424(Water-Futures)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.739551(KIOS CoE)the Government of the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development。
文摘Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.
文摘The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.