The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The ch...The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.展开更多
Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster anal...Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster analysis and gray correlation method, and it includes 10 evaluation parameters in the four aspects of optimal evaluation parameters, determination of weights for evaluation parameters, development stage division, and determination of classification coefficients. This evaluation method was used to evaluate the well pattern adaptability of 13 main ultra-low permeability reservoirs in Triassic Chang 6 and Chang 8 of Ordos Basin. Three basic understandings were obtained: Firstly, the well pattern for ultra-low permeability type-I reservoirs has generally good adaptability, with proper well pattern forms and well pattern parameters. Secondly, square inverted nine-spot well pattern is suitable for reservoirs with no fractures; rhombic inverted nine-spot injection pattern is suitable for reservoirs with some fractures; and rectangular well pattern is suitable for reservoirs with rich fractures. Thirdly, for the ultra-low permeability type-Ⅱ and type-Ⅲ reservoirs, with the principles of well pattern form determination, the row spacing needs to be optimized further to improve the level of development of such reservoirs.展开更多
In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water d...In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water distribution. Through cores observation and fracture statistics, combined with comprehensive analyses of physical property, mercury injection, logging and geochemical data, and comparisons of the sandbodies scales, reservoir physical properties, argillaceous laminae and fractures between source and reservoir in the eastern and western oil-bearing areas and in the central water producing area, it is found that the hydrocarbon accumulation patterns are different in the eastern, central and western areas, and the characteristics of hydrocarbon migration under the background of double-provenance were sorted out. The study results show that the crude oil in the eastern area has different Pr/Ph and sterane distribution from that in the western area. The oil and gas primarily migrated vertically. The high-quality source rocks and favorable source-reservoir-cap combinations lay the foundation for large-scale oil and gas accumulations. Vertically, the oil and gas enrichment is controlled by the scale of sandbody and the difference of physical properties, while on the plane, it is controlled by the connectivity of sandbodies, the argillaceous laminae between source rock and reservoir, the reservoir physical property and the fractures. The sandbodies of oil-rich zones in the eastern and western areas have large thickness, low shale content, good physical properties, weak heterogeneity, few argillaceous laminae and abundant fractures, all of which are favorable for the vertical migration and accumulation of oil and gas. In contrast, in the middle area with converging provenances, the reservoirs, composed of thin sandbodies, features rapid variation in lithology and physical properties, strong heterogeneity, poor continuity of sandbodies, abundant argillaceous laminae between source rock and reservoir, and few fractures, makes it difficult for the oil and gas to migrate vertically, and results in low oil enrichment degree ultimately. For the exploration of continental multiple-provenance tight reservoirs, not only the good-property source rocks and reservoirs, but more importantly the source-reservoir contact relationship and the effect of fractures on the hydrocarbon migration and accumulation should be considered.展开更多
The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased th...The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.展开更多
基于岩心观察、测井解释及开采数据分析,结合流体包裹体等测试,对马岭—乔川地区长6油层组的油藏分布特征及控制因素开展研究。研究结果表明,研究区油藏纵向上主要分布在长63油层段,长62、长61油层段含油性显著变差;平面上,长63油层段以...基于岩心观察、测井解释及开采数据分析,结合流体包裹体等测试,对马岭—乔川地区长6油层组的油藏分布特征及控制因素开展研究。研究结果表明,研究区油藏纵向上主要分布在长63油层段,长62、长61油层段含油性显著变差;平面上,长63油层段以L125,B452和L411井区为中心,油藏团块状分布,呈两条带沿北西南东向延伸,油层厚度主要在5~20 m之间,长62、长61油层呈孤立土豆疙瘩状分布,分布规模小。长6油层组油藏以岩性油藏为主,包裹体均一温度集中在70~90℃,荧光以黄褐色为主,结合区域埋藏史分析显示该区油藏充注为晚侏罗世和中-晚白垩世,表现为早期充注。长6油层组烃源岩厚度、距离,砂体砂质碎屑流砂体性质、物性和叠置类型是其形成油气藏的重要影响因素;长63油层段相比长62和长61油层段具有更靠近烃源岩,砂质碎屑流成因砂体分布广、孔渗条件好、叠置厚层砂体类型发育等优势。研究区最为有利油藏的勘探目标为长63油层段Y470,L374,B452等井区附近,有利勘探区面积达到517.28 km 2。展开更多
A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data an...A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.展开更多
基金supported by the Jiangsu Natural Science Foundation project(SBK2021045820)the Chongqing Natural Science Foundation general Project(cstc2021jcyj-msxmX0624)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(2022WLKXJ002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2600).
文摘The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.
基金Supported by the China National Science and Technology Major Project(2016ZX05050 2017ZX05013-004)
文摘Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster analysis and gray correlation method, and it includes 10 evaluation parameters in the four aspects of optimal evaluation parameters, determination of weights for evaluation parameters, development stage division, and determination of classification coefficients. This evaluation method was used to evaluate the well pattern adaptability of 13 main ultra-low permeability reservoirs in Triassic Chang 6 and Chang 8 of Ordos Basin. Three basic understandings were obtained: Firstly, the well pattern for ultra-low permeability type-I reservoirs has generally good adaptability, with proper well pattern forms and well pattern parameters. Secondly, square inverted nine-spot well pattern is suitable for reservoirs with no fractures; rhombic inverted nine-spot injection pattern is suitable for reservoirs with some fractures; and rectangular well pattern is suitable for reservoirs with rich fractures. Thirdly, for the ultra-low permeability type-Ⅱ and type-Ⅲ reservoirs, with the principles of well pattern form determination, the row spacing needs to be optimized further to improve the level of development of such reservoirs.
基金Supported by the National Natural Science Foundation of China(41872165,41572137)
文摘In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water distribution. Through cores observation and fracture statistics, combined with comprehensive analyses of physical property, mercury injection, logging and geochemical data, and comparisons of the sandbodies scales, reservoir physical properties, argillaceous laminae and fractures between source and reservoir in the eastern and western oil-bearing areas and in the central water producing area, it is found that the hydrocarbon accumulation patterns are different in the eastern, central and western areas, and the characteristics of hydrocarbon migration under the background of double-provenance were sorted out. The study results show that the crude oil in the eastern area has different Pr/Ph and sterane distribution from that in the western area. The oil and gas primarily migrated vertically. The high-quality source rocks and favorable source-reservoir-cap combinations lay the foundation for large-scale oil and gas accumulations. Vertically, the oil and gas enrichment is controlled by the scale of sandbody and the difference of physical properties, while on the plane, it is controlled by the connectivity of sandbodies, the argillaceous laminae between source rock and reservoir, the reservoir physical property and the fractures. The sandbodies of oil-rich zones in the eastern and western areas have large thickness, low shale content, good physical properties, weak heterogeneity, few argillaceous laminae and abundant fractures, all of which are favorable for the vertical migration and accumulation of oil and gas. In contrast, in the middle area with converging provenances, the reservoirs, composed of thin sandbodies, features rapid variation in lithology and physical properties, strong heterogeneity, poor continuity of sandbodies, abundant argillaceous laminae between source rock and reservoir, and few fractures, makes it difficult for the oil and gas to migrate vertically, and results in low oil enrichment degree ultimately. For the exploration of continental multiple-provenance tight reservoirs, not only the good-property source rocks and reservoirs, but more importantly the source-reservoir contact relationship and the effect of fractures on the hydrocarbon migration and accumulation should be considered.
文摘The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.
文摘基于岩心观察、测井解释及开采数据分析,结合流体包裹体等测试,对马岭—乔川地区长6油层组的油藏分布特征及控制因素开展研究。研究结果表明,研究区油藏纵向上主要分布在长63油层段,长62、长61油层段含油性显著变差;平面上,长63油层段以L125,B452和L411井区为中心,油藏团块状分布,呈两条带沿北西南东向延伸,油层厚度主要在5~20 m之间,长62、长61油层呈孤立土豆疙瘩状分布,分布规模小。长6油层组油藏以岩性油藏为主,包裹体均一温度集中在70~90℃,荧光以黄褐色为主,结合区域埋藏史分析显示该区油藏充注为晚侏罗世和中-晚白垩世,表现为早期充注。长6油层组烃源岩厚度、距离,砂体砂质碎屑流砂体性质、物性和叠置类型是其形成油气藏的重要影响因素;长63油层段相比长62和长61油层段具有更靠近烃源岩,砂质碎屑流成因砂体分布广、孔渗条件好、叠置厚层砂体类型发育等优势。研究区最为有利油藏的勘探目标为长63油层段Y470,L374,B452等井区附近,有利勘探区面积达到517.28 km 2。
基金Project(SQ2013CB021013)supported by the National Key Basic Research Program of ChinaProject(41002045)supported by the National Natural Science Foundation of China
文摘A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.