Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in ti...Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in time, but also obtain the great significance of the future management. In this study, taking Changsha-Zhuzhou-Xiangtan(Chang-Zhu-Tan) urban agglomeration in Hunan province as a study area, Landsat images from 1995 to 2014 and Autologistic-CLUE-S model simulation data were used. Moreover, several factors including gravity center, direction, distance and landscape index were considered in the analysis of the expansion. The results revealed that the construction area increased by 132.18%, from 372.28 km^2 in 1995 to 864.37 km^2 in 2014. And it might even reach 1327.23 km^2 in 2023. Before 2014, three cities had their own respective and discrete development directions. However, because of the integration policy implementation in 2008, the Chang-Zhu-Tan began to gather, the gravity center moved southward after 2014, and the distance between cities decreased, which was in line with the development plan of urban expansion. The research methods and results were relatively reliable, and these results could provide some reference for the future land use planning and spatial allocation in the urbanization process of Chang-Zhu-Tan urban agglomeration.展开更多
Urban land intensive use is an important indicator in harmonizing the relationship between land supply and demand. The system dynamics(SD) can be used to construct the feedback loop between urban construction land sup...Urban land intensive use is an important indicator in harmonizing the relationship between land supply and demand. The system dynamics(SD) can be used to construct the feedback loop between urban construction land supply and demand and index variable function. Based on this, this study built a supply and demand system dynamic model of urban construction land for Chang-Zhu-Tan urban agglomeration. This model can simulate the change trends of supply and demand of construction land, industrial land, and residential land in 2016–2030 by three scenarios of low, medium, and high intensity modes. The results showed that the scale of construction land of urban agglomeration is expanding, with a rapid increase rate for the urban construction land. The scale and speed of land use based on the three intensity modes existed differences. The large scale and supply of construction land in the low intensity mode caused easily the waste of land resources. In high intensity mode, the scale and supply of construction land were reduced against the healthy development of new-type urbanization. In the medium intensity mode, the scale and supply of land use adapted to the socio-economic development and at the same time reflected the concept of modern urban development. In addition, the results of this study found that the proportion of industrial land in construction land ranged from 15% to 21%, which increased year by year in the low intensity mode, and decreased slowly and stabilized in medium and high intensity modes. The proportion of residential land in construction land ranged from 27% to 35%, which decreased in the low and the medium intensity modes, and maintained a high level in the higher intensity mode. This study contributes to provide scientific reference for decision-making optimization of land supply and demand, urban planning, and land supply-side reform.展开更多
Using system analysis theory and methods, a dynamic model of a water resource supply and demand system was built to simulate trends in the supply and demand of water in the Changsha-Zhuzhou-Xiangtan (Chang-Zhu-Tan) ...Using system analysis theory and methods, a dynamic model of a water resource supply and demand system was built to simulate trends in the supply and demand of water in the Changsha-Zhuzhou-Xiangtan (Chang-Zhu-Tan) urban agglomeration for the period 2012 to 2030. Four scenarios were examined; namely, a traditional development model, an economic development model, a water-saving model, and a coordinated development model. (i) The problem of balancing water resource supply and demand is becoming increasingly conspicuous with a growing population and a rapidly developing economy. (ii) By 2030, water demand is set to reach a total of 105.1 × 10^8 m^3, with a water supply of 5.4 × 10^8 m^3. A coordinated development model for water resource supply could meet the growing demands of socio-economic development, and generate huge comprehensive benefits. This will be the best solution for the development and utilization of a water resource supply and demand system in the Chang-Zhu-Tan urban agglomeration. (iii) We should accelerate the construction of water conservation projects, strengthen the management of water conservation, optimize economic structures, enhance our awareness of the importance of protecting water resources, hasten the recycling of waste water and environmental improvement, and promote utilization efficiency, and support the capabilities of water resources to meet our expectations.展开更多
基金National Natural Science Foundation of China,No.41571077National Key Research and Development Program of China,No.2016YFC0503002
文摘Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in time, but also obtain the great significance of the future management. In this study, taking Changsha-Zhuzhou-Xiangtan(Chang-Zhu-Tan) urban agglomeration in Hunan province as a study area, Landsat images from 1995 to 2014 and Autologistic-CLUE-S model simulation data were used. Moreover, several factors including gravity center, direction, distance and landscape index were considered in the analysis of the expansion. The results revealed that the construction area increased by 132.18%, from 372.28 km^2 in 1995 to 864.37 km^2 in 2014. And it might even reach 1327.23 km^2 in 2023. Before 2014, three cities had their own respective and discrete development directions. However, because of the integration policy implementation in 2008, the Chang-Zhu-Tan began to gather, the gravity center moved southward after 2014, and the distance between cities decreased, which was in line with the development plan of urban expansion. The research methods and results were relatively reliable, and these results could provide some reference for the future land use planning and spatial allocation in the urbanization process of Chang-Zhu-Tan urban agglomeration.
基金National Social Science Foundation of China,No.15BJY051Social Science Foundation of Hunan Province,No.16ZDB04,No.13YBA016+2 种基金Research Project of Appraisement Committee of Social Sciences Research Achievements of Hunan Province,No.XSP18ZDI031Natural Science Foundation of Hunan Province,No.2017JJ2264Science&Technology Research Project of the Department of Land and Resource of Hunan Province,No.2014-13
文摘Urban land intensive use is an important indicator in harmonizing the relationship between land supply and demand. The system dynamics(SD) can be used to construct the feedback loop between urban construction land supply and demand and index variable function. Based on this, this study built a supply and demand system dynamic model of urban construction land for Chang-Zhu-Tan urban agglomeration. This model can simulate the change trends of supply and demand of construction land, industrial land, and residential land in 2016–2030 by three scenarios of low, medium, and high intensity modes. The results showed that the scale of construction land of urban agglomeration is expanding, with a rapid increase rate for the urban construction land. The scale and speed of land use based on the three intensity modes existed differences. The large scale and supply of construction land in the low intensity mode caused easily the waste of land resources. In high intensity mode, the scale and supply of construction land were reduced against the healthy development of new-type urbanization. In the medium intensity mode, the scale and supply of land use adapted to the socio-economic development and at the same time reflected the concept of modern urban development. In addition, the results of this study found that the proportion of industrial land in construction land ranged from 15% to 21%, which increased year by year in the low intensity mode, and decreased slowly and stabilized in medium and high intensity modes. The proportion of residential land in construction land ranged from 27% to 35%, which decreased in the low and the medium intensity modes, and maintained a high level in the higher intensity mode. This study contributes to provide scientific reference for decision-making optimization of land supply and demand, urban planning, and land supply-side reform.
基金National Social Science Foundation of China, No. 15BJY051 Social Science Foundation of Hunan Province, No. 13YBA016 Science & Technology Research Project of the Department of Land and Resource of Hunan Province, No.2014-13
文摘Using system analysis theory and methods, a dynamic model of a water resource supply and demand system was built to simulate trends in the supply and demand of water in the Changsha-Zhuzhou-Xiangtan (Chang-Zhu-Tan) urban agglomeration for the period 2012 to 2030. Four scenarios were examined; namely, a traditional development model, an economic development model, a water-saving model, and a coordinated development model. (i) The problem of balancing water resource supply and demand is becoming increasingly conspicuous with a growing population and a rapidly developing economy. (ii) By 2030, water demand is set to reach a total of 105.1 × 10^8 m^3, with a water supply of 5.4 × 10^8 m^3. A coordinated development model for water resource supply could meet the growing demands of socio-economic development, and generate huge comprehensive benefits. This will be the best solution for the development and utilization of a water resource supply and demand system in the Chang-Zhu-Tan urban agglomeration. (iii) We should accelerate the construction of water conservation projects, strengthen the management of water conservation, optimize economic structures, enhance our awareness of the importance of protecting water resources, hasten the recycling of waste water and environmental improvement, and promote utilization efficiency, and support the capabilities of water resources to meet our expectations.