At present, with the continuous development of technologies such as the Internet, big data, and artificial intelligence, smart campuses in universities are being rapidly constructed. Improving the informatization leve...At present, with the continuous development of technologies such as the Internet, big data, and artificial intelligence, smart campuses in universities are being rapidly constructed. Improving the informatization level of administrative management work is also an important content. The collaborative office work in multiple departments requires more standardized, convenient, intelligent, and secure office systems. In response to this issue, this article analyzes the optimization and construction process of collaborative office systems based on the development of university informatization, summarizes the operational results, and explores the prospects of smart office.展开更多
Through the analysis of the overall landscape,revetments and roads and plant landscape,10 evaluation factors were determined.The comprehensive evaluation model for the campus space of Anhui Xinhua University was const...Through the analysis of the overall landscape,revetments and roads and plant landscape,10 evaluation factors were determined.The comprehensive evaluation model for the campus space of Anhui Xinhua University was constructed by analytic hierarchy process(AHP).The results showed that revetment safety,road convenience,plant disease resistance and campus activity space were important factors affecting the spatial form planning of campus.Through the comparative analysis of the collected data,optimization suggestions were put forward to provide a basis for the establishment of“people-oriented”campus open space system.展开更多
In the information age,the development of schools needs to be integrated with information education,and the principal,as the leader of the school,has a positive significance for the development of the school.Therefore...In the information age,the development of schools needs to be integrated with information education,and the principal,as the leader of the school,has a positive significance for the development of the school.Therefore,in the process of school informatization development,principals should continuously improve their informatization leadership,and take digitalization as the guide to build schools,accelerate the construction and improvement of campus management,and then promote the school to continuously optimize the overall management and business processes under the immersion of digital culture.Based on this,this paper is based on information leadership and digital campus,and explores the way to improve the information leadership of principals based on the construction of digital campus.展开更多
The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a w...The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.展开更多
In view of rural revitalization,the Meigu area,as a key region of the Tibetan-Yi Corridor,faces challenges in educational development and the construction of campus cultural landscapes.Campus landscape culture,as the ...In view of rural revitalization,the Meigu area,as a key region of the Tibetan-Yi Corridor,faces challenges in educational development and the construction of campus cultural landscapes.Campus landscape culture,as the foundation of campus culture,is one of the important factors affecting the quality of campus education.Integrating traditional cultural elements such as Yi patterns and totems into the design can effectively enhance the aesthetic of the campus,promote the local ethnic characteristic culture,and inject new vitality into rural revitalization.Therefore,this paper applies traditional Yi cultural elements to the design of campus cultural landscapes.This is of great significance for improving the rural school environment and enhancing students’enthusiasm for learning and cultural identity.Besides,it provides an alternative for the preservation and development of local culture.展开更多
In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent techno...In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop...Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.展开更多
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un...The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.展开更多
In order to study the restoration of road landscape space,subjective evaluation method was adopted to visually evaluate different road spaces in Tianjin University with college students as the research objects.Using r...In order to study the restoration of road landscape space,subjective evaluation method was adopted to visually evaluate different road spaces in Tianjin University with college students as the research objects.Using random block design,9 plots were quantitatively studied by Perceived Restorativeness Scale(PRS)from four dimensions:alienation,compatibility,richness and attractiveness.The results show that gray space has the worst restorative effect in the dimension of alienation,and can not bring people the feeling of being away from daily trivialities;in terms of compatibility dimension,green and blue spaces have better restorative effects;richness dimension has no obvious influence on the restoration of plots;in terms of attraction dimension,blue space has strong restorative ability and can easily attract people’s attention,while gray space has low attraction.There are differences in environmental restoration among different types of road space,and gray space,blue space and green space show weak,strong,and relatively stable restorative effects,respectively.展开更多
From the perspective of habitats and species diversity in biodiversity,the species and richness of plants and animals in the campus green spaces of North China University of Technology were surveyed comprehensively by...From the perspective of habitats and species diversity in biodiversity,the species and richness of plants and animals in the campus green spaces of North China University of Technology were surveyed comprehensively by natural observation and field investigation.A total of 118 species of plants and 70species of animals were investigated.The relationship between plants and animals on the campus was analyzed qualitatively.Based on this,the richness of species in the plots suitable for natural education in the sites was investigated and analyzed,and the situations in different seasons were compared to plan natural education areas and trails.In addition,the ways to increase the biodiversity of the sites,the connection between habitats and landscape elements,and the setting of relevant landscape sites were discussed,and it was proposed to integrate more natural education methods to attract people to carry out natural education of biodiversity in the university campus with a learning atmosphere.展开更多
In the campus greening design,the shrub height is generally consistent with people’s horizontal line of sight,which plays a significant role in people’s visual focus.From the perspective of ornamental characteristic...In the campus greening design,the shrub height is generally consistent with people’s horizontal line of sight,which plays a significant role in people’s visual focus.From the perspective of ornamental characteristics of plants,the application of shrub landscape is explored in a campus environment.Based on the analysis of the selection,arrangement and maintenance of shrub plants in campus gardens,the application of shrub landscape on campus was evaluated comprehensively from the theoretical analysis of plant ornamental characteristics and campus shrub landscape.Based on the research background of the problems existing in the application of shrub landscape on campus,this paper first collected and sorted out the relevant theories extensively,and then conducted in-depth research on the relevant theories by using analysis methods such as literature data,field investigation and questionnaire survey.The results will provide a theoretical guidance and practical advocacy for campus garden planning and design,and help to create a livable and comfortable campus environment.It is hoped that the results will have some references for future campus shrub landscape and play a certain promoting role.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
As urban construction enters the era of stock development,the overall spatial environment of the main campus of North China University of Technology also needs to be updated.In this paper,the traffic network in the ca...As urban construction enters the era of stock development,the overall spatial environment of the main campus of North China University of Technology also needs to be updated.In this paper,the traffic network in the campus is extracted to draw the axis map,and the space syntax theory of Depth Map software is used to quantitatively analyze the integration and intelligence degree of the main campus of North China University of Technology.It is found that the overall spatial integration and intelligence degree of the campus are high,but the local space shows poor accessibility and insufficient space carrying capacity.Specific spatial optimization measures are proposed for the corresponding problems.The study compares and analyzes the experience information obtained from actual research with the quantitative index data,integrates the respective advantages of qualitative and quantitative analysis,and hopes to provide a certain theoretical basis for the construction of related campus space.展开更多
The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ...The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.展开更多
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history a...Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history and culture,but also a potential factor affecting students'ideology and values.At present,some colleges and universities in China only concern and consider the visual impact effect of campus landscape construction,while others take landscape planning and construction as an accessory of the main building,which seriously affects the soul guiding role of campus culture in campus landscape.The internal and external landscape pattern of Henan University of Science and Technology with landscape road and water system as the framework,as well as core scenic spots with rich cultural connotations,such as“Peony Dinghu map”,“Yueqin Lake”,embody the university history and culture,the characteristics of western Henan architecture and the specific campus culture positioning,providing a stark example for landscape planning and design of other colleges and universities in the future.展开更多
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e...BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.展开更多
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
文摘At present, with the continuous development of technologies such as the Internet, big data, and artificial intelligence, smart campuses in universities are being rapidly constructed. Improving the informatization level of administrative management work is also an important content. The collaborative office work in multiple departments requires more standardized, convenient, intelligent, and secure office systems. In response to this issue, this article analyzes the optimization and construction process of collaborative office systems based on the development of university informatization, summarizes the operational results, and explores the prospects of smart office.
基金by National Undergraduate Innovation Training Program of Anhui Xinhua University in 2022(202212216012)Provincial Undergraduate Innovation Training Program of Anhui Xinhua University in 2021(AH202112216119)+1 种基金Key Research Project of Natural Science in Colleges and Universities of Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘Through the analysis of the overall landscape,revetments and roads and plant landscape,10 evaluation factors were determined.The comprehensive evaluation model for the campus space of Anhui Xinhua University was constructed by analytic hierarchy process(AHP).The results showed that revetment safety,road convenience,plant disease resistance and campus activity space were important factors affecting the spatial form planning of campus.Through the comparative analysis of the collected data,optimization suggestions were put forward to provide a basis for the establishment of“people-oriented”campus open space system.
文摘In the information age,the development of schools needs to be integrated with information education,and the principal,as the leader of the school,has a positive significance for the development of the school.Therefore,in the process of school informatization development,principals should continuously improve their informatization leadership,and take digitalization as the guide to build schools,accelerate the construction and improvement of campus management,and then promote the school to continuously optimize the overall management and business processes under the immersion of digital culture.Based on this,this paper is based on information leadership and digital campus,and explores the way to improve the information leadership of principals based on the construction of digital campus.
文摘The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.
文摘In view of rural revitalization,the Meigu area,as a key region of the Tibetan-Yi Corridor,faces challenges in educational development and the construction of campus cultural landscapes.Campus landscape culture,as the foundation of campus culture,is one of the important factors affecting the quality of campus education.Integrating traditional cultural elements such as Yi patterns and totems into the design can effectively enhance the aesthetic of the campus,promote the local ethnic characteristic culture,and inject new vitality into rural revitalization.Therefore,this paper applies traditional Yi cultural elements to the design of campus cultural landscapes.This is of great significance for improving the rural school environment and enhancing students’enthusiasm for learning and cultural identity.Besides,it provides an alternative for the preservation and development of local culture.
文摘In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金supported by the National Centre for Atmospheric Science through the NERC National Capability International Programmes Award (NE/ X006263/1)the Global Challenges Research Fund, via Atmospheric hazard in developing Countries: Risk assessment and Early Warning (ACREW) (NE/R000034/1)the Natural Environmental Research Council and the Department for Foreign International Development through the Sat WIN-ALERT project (NE/ R014116/1)。
文摘Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.
基金partially supported by the National Natural Science Foundation of China (Grant No.31772285)the National Key R&D Program Project Funding (Grant No.2018YFD1000607)Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)。
文摘The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.
基金Special Research Program of Tianjin Municipal Education Commission(Psychological Health Education)(2020ZXXL-GX03G)2022 School-level Cultivation Project of Hetian Polytechnic(HZ202310).
文摘In order to study the restoration of road landscape space,subjective evaluation method was adopted to visually evaluate different road spaces in Tianjin University with college students as the research objects.Using random block design,9 plots were quantitatively studied by Perceived Restorativeness Scale(PRS)from four dimensions:alienation,compatibility,richness and attractiveness.The results show that gray space has the worst restorative effect in the dimension of alienation,and can not bring people the feeling of being away from daily trivialities;in terms of compatibility dimension,green and blue spaces have better restorative effects;richness dimension has no obvious influence on the restoration of plots;in terms of attraction dimension,blue space has strong restorative ability and can easily attract people’s attention,while gray space has low attraction.There are differences in environmental restoration among different types of road space,and gray space,blue space and green space show weak,strong,and relatively stable restorative effects,respectively.
基金Sponsored by National Natural Science Foundation of China(52278045)。
文摘From the perspective of habitats and species diversity in biodiversity,the species and richness of plants and animals in the campus green spaces of North China University of Technology were surveyed comprehensively by natural observation and field investigation.A total of 118 species of plants and 70species of animals were investigated.The relationship between plants and animals on the campus was analyzed qualitatively.Based on this,the richness of species in the plots suitable for natural education in the sites was investigated and analyzed,and the situations in different seasons were compared to plan natural education areas and trails.In addition,the ways to increase the biodiversity of the sites,the connection between habitats and landscape elements,and the setting of relevant landscape sites were discussed,and it was proposed to integrate more natural education methods to attract people to carry out natural education of biodiversity in the university campus with a learning atmosphere.
基金Sponsored by Undergraduate Innovation Training Program Support Project of Anhui Province(S202112216125)Key Project of Scientific Research Project(Natural Science)of Colleges and Universities in Anhui Province(2022AH051861)+1 种基金Research Team Project of Anhui Xinhua University(kytd202202)Building Structure Key Laboratory Project of Colleges and Universities in Anhui Province(KLBSZD202105).
文摘In the campus greening design,the shrub height is generally consistent with people’s horizontal line of sight,which plays a significant role in people’s visual focus.From the perspective of ornamental characteristics of plants,the application of shrub landscape is explored in a campus environment.Based on the analysis of the selection,arrangement and maintenance of shrub plants in campus gardens,the application of shrub landscape on campus was evaluated comprehensively from the theoretical analysis of plant ornamental characteristics and campus shrub landscape.Based on the research background of the problems existing in the application of shrub landscape on campus,this paper first collected and sorted out the relevant theories extensively,and then conducted in-depth research on the relevant theories by using analysis methods such as literature data,field investigation and questionnaire survey.The results will provide a theoretical guidance and practical advocacy for campus garden planning and design,and help to create a livable and comfortable campus environment.It is hoped that the results will have some references for future campus shrub landscape and play a certain promoting role.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
文摘As urban construction enters the era of stock development,the overall spatial environment of the main campus of North China University of Technology also needs to be updated.In this paper,the traffic network in the campus is extracted to draw the axis map,and the space syntax theory of Depth Map software is used to quantitatively analyze the integration and intelligence degree of the main campus of North China University of Technology.It is found that the overall spatial integration and intelligence degree of the campus are high,but the local space shows poor accessibility and insufficient space carrying capacity.Specific spatial optimization measures are proposed for the corresponding problems.The study compares and analyzes the experience information obtained from actual research with the quantitative index data,integrates the respective advantages of qualitative and quantitative analysis,and hopes to provide a certain theoretical basis for the construction of related campus space.
基金the National Natural Science Foundation of China(Grants No.42041006,41790443 and 41927806).
文摘The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
基金Sponsored by National Natural Science Foundation of China(32271848)。
文摘Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history and culture,but also a potential factor affecting students'ideology and values.At present,some colleges and universities in China only concern and consider the visual impact effect of campus landscape construction,while others take landscape planning and construction as an accessory of the main building,which seriously affects the soul guiding role of campus culture in campus landscape.The internal and external landscape pattern of Henan University of Science and Technology with landscape road and water system as the framework,as well as core scenic spots with rich cultural connotations,such as“Peony Dinghu map”,“Yueqin Lake”,embody the university history and culture,the characteristics of western Henan architecture and the specific campus culture positioning,providing a stark example for landscape planning and design of other colleges and universities in the future.
文摘BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.