Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho...Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.展开更多
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an...The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.展开更多
In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stabilit...In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.展开更多
With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new ...With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new standards have been put forward for the quality of public spaces for living.This paper analyzes and sorts out the characteristics and problems of the public space in the old residential areas of Baihuazhou district.Combining superposition and intervention techniques,the spatial,historical,cultural and other characteristic elements of the residential areas are preserved to the greatest extent.The public space in the old residential areas of Baihuazhou District is updated and reconstructed in order to achieve the goal of improving the quality of its public space.展开更多
BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes ...BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes in lipid profiles and dyslipidemia and ischemic stroke in a hypertensive population.METHODS Between 2013 and 2014,6094 hypertension individuals were included in this,and ischemic stroke cases were documented to the end of 2018.Longitudinal changes of lipid were stratified into four groups:(1)Normal was transformed into normal group;(2)Abnormal was transformed into normal group;(3)Normal was transformed into abnormal group;and(4)Abnormal was transformed into abnormal group.To examine the link between longitudinal changes in dyslipidemia along with its components and the risk of ischemic stroke,we utilized multivariate Cox proportional hazards models with hazard ratio(HR)and 95%CI.RESULTS The average age of the participants was 62.32 years±13.00 years,with 329 women making up 54.0%of the sample.Over the course of a mean follow-up of 4.8 years,143 ischemic strokes happened.When normal was transformed into normal group was used as a reference,after full adjustments,the HR for dyslipidemia and ischemic stroke among abnormal was transformed into normal group,normal was transformed into abnormal group and abnormal was transformed into abnormal Wei CC et al.Dyslipidemia changed and ischemic stroke WJCC https://www.wjgnet.com 2 February 6,2025 Volume 13 Issue 4 group were 1.089(95%CI:0.598-1.982;P=0.779),2.369(95%CI:1.424-3.941;P<0.001)and 1.448(95%CI:1.002-2.298;P=0.047)(P for trend was 0.233),respectively.CONCLUSION In individuals with hypertension,longitudinal shifts from normal to abnormal in dyslipidemia-particularly in total and low-density lipoprotein cholesterol-were significantly associated with the risk of ischemic stroke.展开更多
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change...We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.展开更多
The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional...The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional factors in its pathogenesis.The application of therapeutic drugs relies on understanding the cascade of molecular events to determine their efficacy in managing the clinical condition.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessme...This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.展开更多
Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge pr...Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.展开更多
Historical forest and grassland cover changes not only are critical indicators for quantifying ecological and environmental change processes but also serve as fundamental data for long-term climate change simulations ...Historical forest and grassland cover changes not only are critical indicators for quantifying ecological and environmental change processes but also serve as fundamental data for long-term climate change simulations and terrestrial ecosystem carbon emission assessments.However,because of limitations in historical data,quantitative estimations and spatially gridded reconstructions of these changes remain challenging,necessitating further methodological exploration.This study focused on China's present-day land area over the past millennium,objectively capturing the characteristics and drivers of forest and grassland cover changes.On this basis,using the forest transition theory and the space-for-time substitution method,we depicted the historical deforestation process as an inverted“S”curve and developed a model to reconstruct historical forest area changes based on the functional relationship between the forest area and population size dynamics.Subsequently,a gridded forest allocation model was established on the basis of deforestation tendencies.For the grassland cover,we implemented regionspecific methods,such as the cropland area deduction method and the habitat constraint method,to quantitatively reconstruct historical changes.Consequently,we obtained provincial forest and grassland area changes over the past millennium and mapped 10-km-resolution gridded data of forest and grassland cover.The results indicated the following.(1)The methods developed using population data as a proxy objectively reproduced the spatiotemporal evolution of forest and grassland cover in China over the past millennium.These feasible methods offer a novel pathway for the quantitative reconstruction of historical forest and grassland cover changes.(2)The data indicated that China's forest area generally decreased over the past millennium,characterized by a“decrease-then-increase”pattern.The forest area experienced three distinct phases:a slow decline(AD 1000–1650),a rapid decline(AD 1650–1960),and a gradual recovery(AD 1960–2000).The area decreased from 298 million hectares(Mha)in AD 1000 to 89 Mha in AD 1960 before increasing to 153 Mha in AD 2000.Spatially,deforestation began in the middlelower reaches of the Yellow River and gradually expanded to the middle-lower reaches of the Yangtze River,the southern coastal areas of China,southwest China,and northeast China,with the forest cover declining by 27%,40%,58%,55%,and 35%in these regions,respectively.(3)China's grassland area has shown a continuous decline over the past millennium with three phases:stable fluctuation(AD 1000–1600),slow decline(AD 1600–1900),and rapid decline(AD 1900–2000).The grassland area decreased from 305 Mha in AD 1000 to 277 Mha in AD 2000.Notably,zonal grassland areas in Northeast China,Inner Mongolia,Gan-Ning,Qinghai,Xinjiang,and Xizang decreased by 28 Mha over the millennium,whereas nonzonal secondary grassland areas in the hilly and mountainous areas of eastern and southern China increased by 0.3 Mha.展开更多
Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural...Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development.展开更多
By using GIS, RS and landscape ecology, LandsatTM (1993 and 2009) and ETM (2001) remote sensing images of Licheng District of Ji’nan City, Shandong Province were interpreted, and dynamic changes of landscape pattern ...By using GIS, RS and landscape ecology, LandsatTM (1993 and 2009) and ETM (2001) remote sensing images of Licheng District of Ji’nan City, Shandong Province were interpreted, and dynamic changes of landscape pattern in the district were analyzed at the levels of class and landscape. The results showed that during the 16 years the landscape pattern in the district had changed significantly. (a) From the perspective of patch category, areas of arable land, woodland and grassland decreased unceasingly, and arable land accounted for the largest reduction from 488.15 km 2 in 1993 down to 324.37 km 2 in 2009, witnessing a reduction rate of 33.56%. But the patch quantity and fragmentation increased, patch connectivity reduced. Spatial pattern of construction land expanded and its area witnessed a significant increase of 147.05%. Patch cohesion index increased and connectivity grew better. (b) From the perspective of overall landscape, patch quantity, contagion and perimeter-area fractal dimension decreased, patch shape became simple, the Shannon’s diversity index, Shannon’s evenness index and splitting index increased, landscape heterogeneity rose. With the rapid social and economic development, landscape pattern will be more and more influenced by human behaviors展开更多
Based on analyzing the changes of land use in Wuzhong District, Suzhou City from 2005 to 2008, temporal and spatial changes of land use from 2008 to 2020 were analyzed by using the model CLUE-S and, from the perspecti...Based on analyzing the changes of land use in Wuzhong District, Suzhou City from 2005 to 2008, temporal and spatial changes of land use from 2008 to 2020 were analyzed by using the model CLUE-S and, from the perspective of landscape ecology, future landscape pattern changes of land use in Wuzhong District were also quantitatively discussed by utilizing landscape indices. The results indicated that there was a large variation range of land use in Wuzhong District from 2005 to 2008 and massive farmland and woodland were transformed into construction land and gardens. Guided by the policy of saving intensive land and protecting farmland, future variation range of land use will get smaller obviously. The fragmentation degree for farmland, woodland and water area will get decreased but will get increased relatively for construction land. In general, all landscapes tend to a balanced development.展开更多
With the wetland landscape in New Coastal District of Tianjin City as the chief study objective and based on the remote sensing and non-remote sensing data of ETM/TM with 1999-2007 as the time scale and the new admini...With the wetland landscape in New Coastal District of Tianjin City as the chief study objective and based on the remote sensing and non-remote sensing data of ETM/TM with 1999-2007 as the time scale and the new administrative region of New Coastal District as the space (scale) scope, this paper conducted the study on the landscape pattern change. The results showed that the natural wetland and agricultural land tended to decrease, while the saltern, maricultural areas and construction land increased apparently. The overall landscape shape tended to develop in simplification and regulation and with the development of population and social economy, human’s intervention to the landscape was getting improved.展开更多
Mountains and waters serve as important elements for urban spatial mor-phology, structure and eco-environment. Since scientist Qian Xuesen proposed the concept of landscape city, it has been an effective way for urban...Mountains and waters serve as important elements for urban spatial mor-phology, structure and eco-environment. Since scientist Qian Xuesen proposed the concept of landscape city, it has been an effective way for urban development in case of thousand-city in the same appearance. In the study, we analyzed the con-cept, connotation and approaches and proposed the ways to landscape city.展开更多
With the case study of Honggutan New District as reference,this paper elaborated the significance of urban green space;the ecological function and cultural function of green landscape which were respectively manifeste...With the case study of Honggutan New District as reference,this paper elaborated the significance of urban green space;the ecological function and cultural function of green landscape which were respectively manifested in the aspect of living and production and in the aspect of accumulation,sedimentation and renovation mark of urban history development.It also explained the composition of wetland region,the situation that there existed quite a lot of wetland,wetland flower species and landscape types.And the existing problems in the construction of Honggutan green landscape were analyzed,which were the fact that the spatial distribution of plants was unreasonable and impracticable;that the function of green space hadn't been fully displayed,lack of participation;that the landscaping plant was monotonous,short of cultural deposits.On the basis of the design theory of green landscape and the living examples of some developed cities,the regionality of urban green landscape was studied;the design principles of elegance,functionality,people-orientation,regional culture's continuity and ecology were put forward,aiming at providing reference for using different factors of practical measures to achieve landscape eco-design with geographical features.展开更多
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un...Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.展开更多
Mountain area is an important geographical unit of land,and its ecology is sensitive and fragile.Over the past few decades,human activities have caused dramatic changes in land use in mountainous areas,which caused ch...Mountain area is an important geographical unit of land,and its ecology is sensitive and fragile.Over the past few decades,human activities have caused dramatic changes in land use in mountainous areas,which caused changes in landscape patterns and impacts on the ecological environment.It is unknown how the mechanism of land use affects the landscape pattern at different scales.The Hantai District,a typical human settlement in the mountain area in Shaanxi,China,was chosen as the study area.Based on the remote sensing images,the mathematical models and landscape indexes were adopted to evaluate the impact of land use change from 1998 to 2017 on the landscape pattern at different scales,and its main driving forces were analyzed.The results showed that the urbanized land expanded largest from 15.39%to 24.30%,and cultivated land experienced the largest decline from 43.54%to 35.35%.Changes in land use have made the patch morphology of most land types developed from a natural random to a sawtooth shape,and its spatial pattern evolved from a ruleset to a fragmented expansion.This reflects the continuous strengthening of human intervention in the process of regional development.Under the jurisdiction of Hantai District,the biggest change in landscape pattern is in Hanzhong City and Qili Town.The improved economy and increasing population and urbanization rate were the main factors that cause these changes.This research could provide necessary information for understanding the evolution mechanism of land resources in mountainous human settlements for mountainous areas with significant geomorphic differentiation.展开更多
基金supported by the Shandong Province Natural Science Foundation Youth Branch(ZR2023QC157)the National Natural Science Foundation of China(51979233)+1 种基金the Key Research and Development Project of Shaanxi Province(2022KW-47,2022NY-220)the Heze University Doctoral Research Fund(XY21BS24,XY22BS17).
文摘Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.
文摘The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.
文摘In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.
文摘With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new standards have been put forward for the quality of public spaces for living.This paper analyzes and sorts out the characteristics and problems of the public space in the old residential areas of Baihuazhou district.Combining superposition and intervention techniques,the spatial,historical,cultural and other characteristic elements of the residential areas are preserved to the greatest extent.The public space in the old residential areas of Baihuazhou District is updated and reconstructed in order to achieve the goal of improving the quality of its public space.
文摘BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes in lipid profiles and dyslipidemia and ischemic stroke in a hypertensive population.METHODS Between 2013 and 2014,6094 hypertension individuals were included in this,and ischemic stroke cases were documented to the end of 2018.Longitudinal changes of lipid were stratified into four groups:(1)Normal was transformed into normal group;(2)Abnormal was transformed into normal group;(3)Normal was transformed into abnormal group;and(4)Abnormal was transformed into abnormal group.To examine the link between longitudinal changes in dyslipidemia along with its components and the risk of ischemic stroke,we utilized multivariate Cox proportional hazards models with hazard ratio(HR)and 95%CI.RESULTS The average age of the participants was 62.32 years±13.00 years,with 329 women making up 54.0%of the sample.Over the course of a mean follow-up of 4.8 years,143 ischemic strokes happened.When normal was transformed into normal group was used as a reference,after full adjustments,the HR for dyslipidemia and ischemic stroke among abnormal was transformed into normal group,normal was transformed into abnormal group and abnormal was transformed into abnormal Wei CC et al.Dyslipidemia changed and ischemic stroke WJCC https://www.wjgnet.com 2 February 6,2025 Volume 13 Issue 4 group were 1.089(95%CI:0.598-1.982;P=0.779),2.369(95%CI:1.424-3.941;P<0.001)and 1.448(95%CI:1.002-2.298;P=0.047)(P for trend was 0.233),respectively.CONCLUSION In individuals with hypertension,longitudinal shifts from normal to abnormal in dyslipidemia-particularly in total and low-density lipoprotein cholesterol-were significantly associated with the risk of ischemic stroke.
基金Funded by Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.
文摘The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional factors in its pathogenesis.The application of therapeutic drugs relies on understanding the cascade of molecular events to determine their efficacy in managing the clinical condition.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.
基金Open Access funding provided by Kobe UniversityThis research was partially performed by the Environment Research and Technology Development Fund(2RL-2301)of the Environmental Restoration and Conservation Agency provided by Ministry of the Environment of Japan.
文摘This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.
文摘Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0603304)the National Natural Science Foundation of China(Grant No.42201263)。
文摘Historical forest and grassland cover changes not only are critical indicators for quantifying ecological and environmental change processes but also serve as fundamental data for long-term climate change simulations and terrestrial ecosystem carbon emission assessments.However,because of limitations in historical data,quantitative estimations and spatially gridded reconstructions of these changes remain challenging,necessitating further methodological exploration.This study focused on China's present-day land area over the past millennium,objectively capturing the characteristics and drivers of forest and grassland cover changes.On this basis,using the forest transition theory and the space-for-time substitution method,we depicted the historical deforestation process as an inverted“S”curve and developed a model to reconstruct historical forest area changes based on the functional relationship between the forest area and population size dynamics.Subsequently,a gridded forest allocation model was established on the basis of deforestation tendencies.For the grassland cover,we implemented regionspecific methods,such as the cropland area deduction method and the habitat constraint method,to quantitatively reconstruct historical changes.Consequently,we obtained provincial forest and grassland area changes over the past millennium and mapped 10-km-resolution gridded data of forest and grassland cover.The results indicated the following.(1)The methods developed using population data as a proxy objectively reproduced the spatiotemporal evolution of forest and grassland cover in China over the past millennium.These feasible methods offer a novel pathway for the quantitative reconstruction of historical forest and grassland cover changes.(2)The data indicated that China's forest area generally decreased over the past millennium,characterized by a“decrease-then-increase”pattern.The forest area experienced three distinct phases:a slow decline(AD 1000–1650),a rapid decline(AD 1650–1960),and a gradual recovery(AD 1960–2000).The area decreased from 298 million hectares(Mha)in AD 1000 to 89 Mha in AD 1960 before increasing to 153 Mha in AD 2000.Spatially,deforestation began in the middlelower reaches of the Yellow River and gradually expanded to the middle-lower reaches of the Yangtze River,the southern coastal areas of China,southwest China,and northeast China,with the forest cover declining by 27%,40%,58%,55%,and 35%in these regions,respectively.(3)China's grassland area has shown a continuous decline over the past millennium with three phases:stable fluctuation(AD 1000–1600),slow decline(AD 1600–1900),and rapid decline(AD 1900–2000).The grassland area decreased from 305 Mha in AD 1000 to 277 Mha in AD 2000.Notably,zonal grassland areas in Northeast China,Inner Mongolia,Gan-Ning,Qinghai,Xinjiang,and Xizang decreased by 28 Mha over the millennium,whereas nonzonal secondary grassland areas in the hilly and mountainous areas of eastern and southern China increased by 0.3 Mha.
基金Under the auspices of Major Program of National Natural Science Foundation of China(No.42293271)Alliance of International Science Organizations(No.ANSO-PA-2023-16)。
文摘Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development.
文摘By using GIS, RS and landscape ecology, LandsatTM (1993 and 2009) and ETM (2001) remote sensing images of Licheng District of Ji’nan City, Shandong Province were interpreted, and dynamic changes of landscape pattern in the district were analyzed at the levels of class and landscape. The results showed that during the 16 years the landscape pattern in the district had changed significantly. (a) From the perspective of patch category, areas of arable land, woodland and grassland decreased unceasingly, and arable land accounted for the largest reduction from 488.15 km 2 in 1993 down to 324.37 km 2 in 2009, witnessing a reduction rate of 33.56%. But the patch quantity and fragmentation increased, patch connectivity reduced. Spatial pattern of construction land expanded and its area witnessed a significant increase of 147.05%. Patch cohesion index increased and connectivity grew better. (b) From the perspective of overall landscape, patch quantity, contagion and perimeter-area fractal dimension decreased, patch shape became simple, the Shannon’s diversity index, Shannon’s evenness index and splitting index increased, landscape heterogeneity rose. With the rapid social and economic development, landscape pattern will be more and more influenced by human behaviors
文摘Based on analyzing the changes of land use in Wuzhong District, Suzhou City from 2005 to 2008, temporal and spatial changes of land use from 2008 to 2020 were analyzed by using the model CLUE-S and, from the perspective of landscape ecology, future landscape pattern changes of land use in Wuzhong District were also quantitatively discussed by utilizing landscape indices. The results indicated that there was a large variation range of land use in Wuzhong District from 2005 to 2008 and massive farmland and woodland were transformed into construction land and gardens. Guided by the policy of saving intensive land and protecting farmland, future variation range of land use will get smaller obviously. The fragmentation degree for farmland, woodland and water area will get decreased but will get increased relatively for construction land. In general, all landscapes tend to a balanced development.
基金Supported by National Natural Sciences Foundation (30872039)Key Projects of Beijing Natural Sciences Foundation (09D0297)~~
文摘With the wetland landscape in New Coastal District of Tianjin City as the chief study objective and based on the remote sensing and non-remote sensing data of ETM/TM with 1999-2007 as the time scale and the new administrative region of New Coastal District as the space (scale) scope, this paper conducted the study on the landscape pattern change. The results showed that the natural wetland and agricultural land tended to decrease, while the saltern, maricultural areas and construction land increased apparently. The overall landscape shape tended to develop in simplification and regulation and with the development of population and social economy, human’s intervention to the landscape was getting improved.
文摘Mountains and waters serve as important elements for urban spatial mor-phology, structure and eco-environment. Since scientist Qian Xuesen proposed the concept of landscape city, it has been an effective way for urban development in case of thousand-city in the same appearance. In the study, we analyzed the con-cept, connotation and approaches and proposed the ways to landscape city.
文摘With the case study of Honggutan New District as reference,this paper elaborated the significance of urban green space;the ecological function and cultural function of green landscape which were respectively manifested in the aspect of living and production and in the aspect of accumulation,sedimentation and renovation mark of urban history development.It also explained the composition of wetland region,the situation that there existed quite a lot of wetland,wetland flower species and landscape types.And the existing problems in the construction of Honggutan green landscape were analyzed,which were the fact that the spatial distribution of plants was unreasonable and impracticable;that the function of green space hadn't been fully displayed,lack of participation;that the landscaping plant was monotonous,short of cultural deposits.On the basis of the design theory of green landscape and the living examples of some developed cities,the regionality of urban green landscape was studied;the design principles of elegance,functionality,people-orientation,regional culture's continuity and ecology were put forward,aiming at providing reference for using different factors of practical measures to achieve landscape eco-design with geographical features.
基金financially supported by the Natural Science Foundation of China(Grant No:10872219)
文摘Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.
基金funded by Natural Science Foundation of China(51378067)the Natural Science Foundation of Shaanxi(806215594019)。
文摘Mountain area is an important geographical unit of land,and its ecology is sensitive and fragile.Over the past few decades,human activities have caused dramatic changes in land use in mountainous areas,which caused changes in landscape patterns and impacts on the ecological environment.It is unknown how the mechanism of land use affects the landscape pattern at different scales.The Hantai District,a typical human settlement in the mountain area in Shaanxi,China,was chosen as the study area.Based on the remote sensing images,the mathematical models and landscape indexes were adopted to evaluate the impact of land use change from 1998 to 2017 on the landscape pattern at different scales,and its main driving forces were analyzed.The results showed that the urbanized land expanded largest from 15.39%to 24.30%,and cultivated land experienced the largest decline from 43.54%to 35.35%.Changes in land use have made the patch morphology of most land types developed from a natural random to a sawtooth shape,and its spatial pattern evolved from a ruleset to a fragmented expansion.This reflects the continuous strengthening of human intervention in the process of regional development.Under the jurisdiction of Hantai District,the biggest change in landscape pattern is in Hanzhong City and Qili Town.The improved economy and increasing population and urbanization rate were the main factors that cause these changes.This research could provide necessary information for understanding the evolution mechanism of land resources in mountainous human settlements for mountainous areas with significant geomorphic differentiation.