The research purpose is to accurately reveal the temporal and spatial law of the urban expansion of Changsha-Zhuzhou-Xiangtan, one of the seven major urban agglomeration areas in China, and provide decision-making bas...The research purpose is to accurately reveal the temporal and spatial law of the urban expansion of Changsha-Zhuzhou-Xiangtan, one of the seven major urban agglomeration areas in China, and provide decision-making basis for the future urban construction land layout and regional development policy-making. Based on the night lighting data (DMSP/OLS), this paper extracts the boundary of the urban construction land of Changsha-Zhuzhou-Xiangtan urban agglomeration from 1993 to 2017, and quantitatively studies the spatial and temporal characteristics of the expansion of the metropolitan area in the past 25 years according to the methods of spatial expansion analysis, center of gravity migration measurement, landscape pattern index, spatial autocorrelation, etc. The results show that: 1) it is scientific and feasible to extract urban agglomeration construction land by the method of auxiliary data comparison for the study of urban expansion;2) the expansion of regional space in Changsha-Zhuzhou-Xiangtan metropolitan area shows a trend of “weakening first and strengthening later”. The construction land keeps increasing, and the expansion form gradually changes from extensive type to intensive type;3) the center of gravity of the metropolitan area fluctuated and repeated in part during the past 25 years, but it was always located in the municipal district of Changsha city. The eastern region, mainly Changsha city, was still the core area of urban agglomeration expansion;4) strengthening the territorial space protection and control of ecological green core in the metropolitan area is a key measure for the high-quality development of urban agglomeration.展开更多
This study assesses surface urban heat island (UHI) and its associated surface physical characteristics using remote sensing approaches. TERRA/MODIS images acquired in 2005 in three different seasons were selected to ...This study assesses surface urban heat island (UHI) and its associated surface physical characteristics using remote sensing approaches. TERRA/MODIS images acquired in 2005 in three different seasons were selected to generate land surface tem-perature and surface characteristics for the Changsha-Zhuzhou-Xiangtan metropolitan area in China. The intensity of urban heat is-land effects and its seasonal variations were examined. The result showed that UHI effects were significant both in the summer and the spring. Land surface temperatures in the city were 8 ℃ to 10℃ warmer than those in surrounding rural areas in the spring and the summer seasons. Although UHI effects exist in winter, they are not significant. Land surface temperature in the city was 4℃ warmer than that in surrounding rural areas in winter. This study uses normalized difference vegetation index (NDVI) and normal-ized difference built-up index (NDBI) as indicators of surface physical characteristics and investigates the relationship among land surface temperature (LST), NDVI and NDBI. The results from this study indicate that, while the relationship between LST and NDVI changes in different seasons, there is a strong positive linear relationship between NDBI and LST for all seasons. The amount of slope and intercept of the linear relationship between NDBI and LST can indicate the magnitude of UHI for different seasons. This finding suggests that NDBI provides an alternative physical indicator for analyzing LST quantitatively over different seasons, and therefore providing a useful way to study UHI effects using remote sensing.展开更多
文摘The research purpose is to accurately reveal the temporal and spatial law of the urban expansion of Changsha-Zhuzhou-Xiangtan, one of the seven major urban agglomeration areas in China, and provide decision-making basis for the future urban construction land layout and regional development policy-making. Based on the night lighting data (DMSP/OLS), this paper extracts the boundary of the urban construction land of Changsha-Zhuzhou-Xiangtan urban agglomeration from 1993 to 2017, and quantitatively studies the spatial and temporal characteristics of the expansion of the metropolitan area in the past 25 years according to the methods of spatial expansion analysis, center of gravity migration measurement, landscape pattern index, spatial autocorrelation, etc. The results show that: 1) it is scientific and feasible to extract urban agglomeration construction land by the method of auxiliary data comparison for the study of urban expansion;2) the expansion of regional space in Changsha-Zhuzhou-Xiangtan metropolitan area shows a trend of “weakening first and strengthening later”. The construction land keeps increasing, and the expansion form gradually changes from extensive type to intensive type;3) the center of gravity of the metropolitan area fluctuated and repeated in part during the past 25 years, but it was always located in the municipal district of Changsha city. The eastern region, mainly Changsha city, was still the core area of urban agglomeration expansion;4) strengthening the territorial space protection and control of ecological green core in the metropolitan area is a key measure for the high-quality development of urban agglomeration.
基金Supported by the National Natural Science Foundation of China (No.40771198)the Hunan Provincial Natural Science Foundation of China (No.08JJ6023)
文摘This study assesses surface urban heat island (UHI) and its associated surface physical characteristics using remote sensing approaches. TERRA/MODIS images acquired in 2005 in three different seasons were selected to generate land surface tem-perature and surface characteristics for the Changsha-Zhuzhou-Xiangtan metropolitan area in China. The intensity of urban heat is-land effects and its seasonal variations were examined. The result showed that UHI effects were significant both in the summer and the spring. Land surface temperatures in the city were 8 ℃ to 10℃ warmer than those in surrounding rural areas in the spring and the summer seasons. Although UHI effects exist in winter, they are not significant. Land surface temperature in the city was 4℃ warmer than that in surrounding rural areas in winter. This study uses normalized difference vegetation index (NDVI) and normal-ized difference built-up index (NDBI) as indicators of surface physical characteristics and investigates the relationship among land surface temperature (LST), NDVI and NDBI. The results from this study indicate that, while the relationship between LST and NDVI changes in different seasons, there is a strong positive linear relationship between NDBI and LST for all seasons. The amount of slope and intercept of the linear relationship between NDBI and LST can indicate the magnitude of UHI for different seasons. This finding suggests that NDBI provides an alternative physical indicator for analyzing LST quantitatively over different seasons, and therefore providing a useful way to study UHI effects using remote sensing.