The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef do...The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef dolomites and their origins have been major research topics for sedimentologists and oil & gas geologists. The petrography, trace element and isotope geochemistry of the reef dolomites indicated that the dolomites are characterized by low Sr and Mn contents, relatively low Fe contents, very similar δ13C and 6180 values and very different 87Sr/86Sr ratios. Although the calculated results of the fluid mixing suggested that a mixture with 85%-95% meteoric water and 50/o- 15% seawater seemed to be the dolomitizing fluids of the reef dolomites, the low Mn contents, relatively low Fe contents, high δ13c values and high homogenization temperatures of the dolomites did not support that there were large proportions of meteoric water in the dolomitization process, and the 87Sr/86Sr ratios which were close to coeval seawater also did not support the possibility of the mixture of deep-burial circulated fluids from clastic rocks. High temperature deep-burial circulated seawater with low Mn and Fe contents, high Sr content and high δ13C values from the dissolution of widely distributed Triassic evaporites during the burial diagenetic processes (including dehydration of water-bearing evaporites) could have been the dolomitizing fluids of the reef dolomites.展开更多
Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary...Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.展开更多
Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surround...Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surrounding rock, it is difficult to identify and predict the reservoirs and fluid properties by conventional post-stack inversion. Through correlation analysis of core test data and logging P-S wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges, and solved the issue that some wells in the study area have no S-wave data. AVO forward analysis reveals that formation porosity is the main factor affecting the variation of AVO type, the change of water saturation cannot affect the AVO type, but it has an effect on the change range of AVO. Through cross-plotting analysis of elastic parameters, it is found that fluid factor is a parameter sensitive to gas-bearing property of organic reef reservoir in the study area. By comparing results of post-stack impedance inversion, post-stack high frequency attenuation property, pre-stack simultaneous inversion and AVO anomaly analysis of angle gathers, it is found that the gas-bearing prediction of organic reef reservoirs by using fluid factor derived from simultaneous pre-stack inversion had the highest coincidence rate with actual drilling data. At last, according to the characteristics of fluid factor distribution, the favorable gas-bearing area of the organic reef reservoir in Changxing Formation was predicted, and the organic reef trap at the top of Changxing Formation in Block A of Damaoping area was sorted out as the next exploration target.展开更多
Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methan...Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.展开更多
Deposits of Permian rocks in Kalmard Block are recognized with Khan Group, showing various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. ...Deposits of Permian rocks in Kalmard Block are recognized with Khan Group, showing various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Upper Permian deposits (Hermez Formation) are composed chiefly of lateritic and carbonate rocks. This formation is composed of 65.5 m lateritic soils, lateritic sandstone, limestone, dolomite and dolomitic limestone in the Darin section. This formation unconformably overlies middle Permian siliciclastic and evaporite deposits (Sartakht Formation), where as it is depicted underlying an erosional unconformity above lateritic deposits of lower Triassic (Sorkh Shale Formation). According to lithologic and microscopic investigations, the deposits of Hermez Formation can be divided into 1 siliciclastic petrofacies and 14 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon, tidal flat and shoal environments and low thickness of open marine microfacies. Hermez Formation rocks in Darin section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleo-Tethys Ocean.展开更多
Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Uppe...Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Upper Yangtze Region was studied.The Changxing Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks;in addition,clastic and siliceous rocks occur with rare coals and pyroclastic rocks.Lithofacies can be divided into five types,including clastic rock assemblage,clastic rock-limestone assemblage,limestone assemblage,limestone-siliceous rock assemblage,and siliceous rock-clastic rock assemblage.Four fundamental ecological types and five fossil assemblages were recognized in the Changxing Stage.On the basis of the petrological and palaeoecological study,eight single factors were chosen including thickness,content of marine rocks,content of shallow water carbonate rocks,content of bioclasts with limemud matrix,content of bioclasts with sparry cement,distribution of reefs,content of thin bedded siliceous rocks and content of deep water sedimentary rocks.And eight single factor maps and one lithofacies paleogeographic map of the Changxing Stage were compiled.Paleoenvironments from west to east include an erosional area,fluvial plain,clastic platform,carbonate platform and reefs that developed there,slope and basin,low energy organic banks,and high energy organic banks.Sedimentary environments have an obvious control on the development of the source rocks,and the excellent source rocks are developed in the Dalong Formation.Changxing Stage reservoirs should be dominated by the reef and platform surrounding the GuangyuanLiangping Basin rim area,and is the most favorable exploration area of the reef petroleum reservoirs of the Changxing Formation.展开更多
During the field work,one assumption has been made according to the lithologic,especially the paleotogic characteristics observed. The assumption is that the Upper Permian series should exist in Aduogabu which is in X...During the field work,one assumption has been made according to the lithologic,especially the paleotogic characteristics observed. The assumption is that the Upper Permian series should exist in Aduogabu which is in Xiadong Town, Gaize County, Tibet. This assumption was verified by the results of paleontologic identification. Accordingly it can be concluded展开更多
A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the...A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the Upper Permian Linxi Formation in the Jalaid locality,the Inner Mongolia Autonomous region,China.The genus Ufadendron is characterized as having the long fusiform leaf cushions,with small and rounded leaf scar containing a central point-like scar which is situated at the upper part of leaf cushion;the infrafoliar bladder of fusiform shape positioned in the middle part of leaf cushion;the wings and heel well-developed in the lateral parts and the lower part of leaf cushion,respectively.The new species is different from the type species U.ufaense(Naugolnykh 2014)collected from the Lower Permian of the Cis-Urals,western limits of Angaraland,in the elongated leaf cushion and in the well-pronounced heel.It should be noted,that a vascular bundle(conductive strand)occupied the middle part of the central point-like scar.So far,only 5 genera of Angaran elements among lycopsids have been discovered in the region geographically belonging to Angaran Realm(Phytogeoprovince)in China.The new species U.elongatum not only enlarges our knowledge on the taxonomy of Tomiodendraceae lycopsids,and also provides an opportunity to understand the difference between Angaran and Cathaysian floras in paleoclimatic context.展开更多
Taking advantage of the successful experience in exploring and discovering the Puguang Gasfield,and targeting the Changxing Formation-Feixianguan Formation organic reef and shoal lithological trap,SINOPEC drilled Well...Taking advantage of the successful experience in exploring and discovering the Puguang Gasfield,and targeting the Changxing Formation-Feixianguan Formation organic reef and shoal lithological trap,SINOPEC drilled Well Yuanba 1 in the Bazhong area in Northeast Sichuan in 2006,and discovered the Yuanba Gasfield with a high-production commercial gas flow of 503×10^(3) m^(3)/d.As a normal-pressured lithological gas reservoir with high H_(2)S content,Yuanba Gasfield is characterized by weak tectonic deformation and deep burial,with an average depth of 6,600 m in the central part of the gas reservoir,and is the deepest marine gas field in the Sichuan Basin.Yuanba Gasfield is dominated by large-scale reef-shoal reservoirs of Changxing Formation.The formation of the reservoirs was primarily controlled by early meteoric freshwater dissolution and dolomitization,and less affected by deep-burial dissolution and tectonic movement.A comparative analysis was made on the characteristics of deep reef-shoal reservoirs in the Yuanba and Puguang gas fields so as to explore their formation mechanisms.It is concluded that the reservoir size and early pore development was controlled by early depositional-diagenetic environment.Fracture formation and dissolution were controlled by structure-fluid coupling,pore reworking and preservation is determined by fluid-rock interaction.展开更多
Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in ...Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.展开更多
基金supported by the National Natural Science Foundation (41172099,40839908)Research Fund for the Doctoral Program of Higher Education of China(20050616005)
文摘The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef dolomites and their origins have been major research topics for sedimentologists and oil & gas geologists. The petrography, trace element and isotope geochemistry of the reef dolomites indicated that the dolomites are characterized by low Sr and Mn contents, relatively low Fe contents, very similar δ13C and 6180 values and very different 87Sr/86Sr ratios. Although the calculated results of the fluid mixing suggested that a mixture with 85%-95% meteoric water and 50/o- 15% seawater seemed to be the dolomitizing fluids of the reef dolomites, the low Mn contents, relatively low Fe contents, high δ13c values and high homogenization temperatures of the dolomites did not support that there were large proportions of meteoric water in the dolomitization process, and the 87Sr/86Sr ratios which were close to coeval seawater also did not support the possibility of the mixture of deep-burial circulated fluids from clastic rocks. High temperature deep-burial circulated seawater with low Mn and Fe contents, high Sr content and high δ13C values from the dissolution of widely distributed Triassic evaporites during the burial diagenetic processes (including dehydration of water-bearing evaporites) could have been the dolomitizing fluids of the reef dolomites.
基金Supported by the PetroChina-Southwest Petroleum University Innovation Consortium Technology Cooperation Project (2020CX010000)。
文摘Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.
基金Supported by the National Natural Science Foundation of China(41430316)China National Science and Technology Major Project(2017ZX05008-004-008).
文摘Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surrounding rock, it is difficult to identify and predict the reservoirs and fluid properties by conventional post-stack inversion. Through correlation analysis of core test data and logging P-S wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges, and solved the issue that some wells in the study area have no S-wave data. AVO forward analysis reveals that formation porosity is the main factor affecting the variation of AVO type, the change of water saturation cannot affect the AVO type, but it has an effect on the change range of AVO. Through cross-plotting analysis of elastic parameters, it is found that fluid factor is a parameter sensitive to gas-bearing property of organic reef reservoir in the study area. By comparing results of post-stack impedance inversion, post-stack high frequency attenuation property, pre-stack simultaneous inversion and AVO anomaly analysis of angle gathers, it is found that the gas-bearing prediction of organic reef reservoirs by using fluid factor derived from simultaneous pre-stack inversion had the highest coincidence rate with actual drilling data. At last, according to the characteristics of fluid factor distribution, the favorable gas-bearing area of the organic reef reservoir in Changxing Formation was predicted, and the organic reef trap at the top of Changxing Formation in Block A of Damaoping area was sorted out as the next exploration target.
基金This study was supported by the China Geological Survey Projects(DD20160186,12120115008201)
文摘Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.
文摘Deposits of Permian rocks in Kalmard Block are recognized with Khan Group, showing various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Upper Permian deposits (Hermez Formation) are composed chiefly of lateritic and carbonate rocks. This formation is composed of 65.5 m lateritic soils, lateritic sandstone, limestone, dolomite and dolomitic limestone in the Darin section. This formation unconformably overlies middle Permian siliciclastic and evaporite deposits (Sartakht Formation), where as it is depicted underlying an erosional unconformity above lateritic deposits of lower Triassic (Sorkh Shale Formation). According to lithologic and microscopic investigations, the deposits of Hermez Formation can be divided into 1 siliciclastic petrofacies and 14 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon, tidal flat and shoal environments and low thickness of open marine microfacies. Hermez Formation rocks in Darin section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleo-Tethys Ocean.
基金supported by the marine petroleum exploration project "Study of the quantitative lithofacies,palaeogeography and petroleum predication of Permian in South China" from China Petroleum & Chemical Corporation(YPH08019)the twelfth Five-Year Plan of major national science and technology project " Study on accumulation conditions and favorable exploration area evaluation of marine carbonate rocks in South China"(2011ZX05004-001-004)
文摘Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Upper Yangtze Region was studied.The Changxing Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks;in addition,clastic and siliceous rocks occur with rare coals and pyroclastic rocks.Lithofacies can be divided into five types,including clastic rock assemblage,clastic rock-limestone assemblage,limestone assemblage,limestone-siliceous rock assemblage,and siliceous rock-clastic rock assemblage.Four fundamental ecological types and five fossil assemblages were recognized in the Changxing Stage.On the basis of the petrological and palaeoecological study,eight single factors were chosen including thickness,content of marine rocks,content of shallow water carbonate rocks,content of bioclasts with limemud matrix,content of bioclasts with sparry cement,distribution of reefs,content of thin bedded siliceous rocks and content of deep water sedimentary rocks.And eight single factor maps and one lithofacies paleogeographic map of the Changxing Stage were compiled.Paleoenvironments from west to east include an erosional area,fluvial plain,clastic platform,carbonate platform and reefs that developed there,slope and basin,low energy organic banks,and high energy organic banks.Sedimentary environments have an obvious control on the development of the source rocks,and the excellent source rocks are developed in the Dalong Formation.Changxing Stage reservoirs should be dominated by the reef and platform surrounding the GuangyuanLiangping Basin rim area,and is the most favorable exploration area of the reef petroleum reservoirs of the Changxing Formation.
文摘During the field work,one assumption has been made according to the lithologic,especially the paleotogic characteristics observed. The assumption is that the Upper Permian series should exist in Aduogabu which is in Xiadong Town, Gaize County, Tibet. This assumption was verified by the results of paleontologic identification. Accordingly it can be concluded
基金financially supported by the Geological Survey of China(No.DD20160048-02)the National Natural Science Foundation of China(No.31470324)+2 种基金the Project 111 of China(No.B06008)the Doctoral Fund of Shenyang Normal University(No.054/55440109030)supported by the State Program(Geological Institute,Russian Acad.Sci.)(No.0135-2019-0044)the Russian Government to support the Program of Competitive Growth of Kazan Federal University among World’s Leading Academic Centers
文摘A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the Upper Permian Linxi Formation in the Jalaid locality,the Inner Mongolia Autonomous region,China.The genus Ufadendron is characterized as having the long fusiform leaf cushions,with small and rounded leaf scar containing a central point-like scar which is situated at the upper part of leaf cushion;the infrafoliar bladder of fusiform shape positioned in the middle part of leaf cushion;the wings and heel well-developed in the lateral parts and the lower part of leaf cushion,respectively.The new species is different from the type species U.ufaense(Naugolnykh 2014)collected from the Lower Permian of the Cis-Urals,western limits of Angaraland,in the elongated leaf cushion and in the well-pronounced heel.It should be noted,that a vascular bundle(conductive strand)occupied the middle part of the central point-like scar.So far,only 5 genera of Angaran elements among lycopsids have been discovered in the region geographically belonging to Angaran Realm(Phytogeoprovince)in China.The new species U.elongatum not only enlarges our knowledge on the taxonomy of Tomiodendraceae lycopsids,and also provides an opportunity to understand the difference between Angaran and Cathaysian floras in paleoclimatic context.
基金This study was supported by China Geological Survey(Zi[2012]02-029-006).
文摘Taking advantage of the successful experience in exploring and discovering the Puguang Gasfield,and targeting the Changxing Formation-Feixianguan Formation organic reef and shoal lithological trap,SINOPEC drilled Well Yuanba 1 in the Bazhong area in Northeast Sichuan in 2006,and discovered the Yuanba Gasfield with a high-production commercial gas flow of 503×10^(3) m^(3)/d.As a normal-pressured lithological gas reservoir with high H_(2)S content,Yuanba Gasfield is characterized by weak tectonic deformation and deep burial,with an average depth of 6,600 m in the central part of the gas reservoir,and is the deepest marine gas field in the Sichuan Basin.Yuanba Gasfield is dominated by large-scale reef-shoal reservoirs of Changxing Formation.The formation of the reservoirs was primarily controlled by early meteoric freshwater dissolution and dolomitization,and less affected by deep-burial dissolution and tectonic movement.A comparative analysis was made on the characteristics of deep reef-shoal reservoirs in the Yuanba and Puguang gas fields so as to explore their formation mechanisms.It is concluded that the reservoir size and early pore development was controlled by early depositional-diagenetic environment.Fracture formation and dissolution were controlled by structure-fluid coupling,pore reworking and preservation is determined by fluid-rock interaction.
基金Supported by the Petrochina Science and Technology Project(2016E-0601)
文摘Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.