The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key ...Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.展开更多
After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the cod...After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.展开更多
To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by ...To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by sub-polar codes with different code lengths.To improve coding performance,sub-polar codes are united by polarization effect priority algorithm,which can reduce the number of in-completely polarized channels.Then,the construction method of the generator matrix of the stepwise po-lar code is presented.Furthermore,we prove that the proposed scheme has lower decoding complexity than punctured,multi-kernel polar codes.Simulation results show that the proposed method can achieve similar decoding performance compared with the conventional punctured polar codes,rate-compatible punctured polar code,PC-short and asymmetric polar codes(APC)when code length N=48 and 72,respectively.展开更多
In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal r...In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.展开更多
This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based o...This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based on Channel State Information(CSI) between the legitimate transmitter(Alice) and the legitimate receiver(Bob).Different from existing secure transmission schemes, the proposed scheme does not require CSI between Alice and the eavesdropper(Eve). The proposed scheme is proven to be reliable and shown to be capable of transmitting information securely under Amplify-and-Forward(AF) relay protocol, thereby providing security against passive and active attackers.展开更多
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
基金supported by the National Natural Science Foundation of China(No.61171099,No.61671080),Nokia Beijing Bell lab
文摘Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.
基金supported in part by the Key Program of National Natural Science Foundation of China (No.92067202)in part by the National Natural Science Foundation of China (No.62071058)in part by the Major Key Project of PCL (PCL2021A15)。
文摘After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.
基金supported in part by Joint Fund for Smart Computing of Natural Science Foundation of Shandong Province(ZR2019LZH001)Shandong University Youth Innovation Supporting Program(2019KJN020,2019KJN024)+1 种基金Shandong Key Research and Development Project(2019GGX101066)the Taishan Scholar Program of Shandong Province,the Natural Science Foundation of China(61701284).
文摘To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by sub-polar codes with different code lengths.To improve coding performance,sub-polar codes are united by polarization effect priority algorithm,which can reduce the number of in-completely polarized channels.Then,the construction method of the generator matrix of the stepwise po-lar code is presented.Furthermore,we prove that the proposed scheme has lower decoding complexity than punctured,multi-kernel polar codes.Simulation results show that the proposed method can achieve similar decoding performance compared with the conventional punctured polar codes,rate-compatible punctured polar code,PC-short and asymmetric polar codes(APC)when code length N=48 and 72,respectively.
基金supported by the National Natural Science Foundation of China (No.41574137, 41304117)
文摘In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.
基金supported in part by the National Natural Science Foundation of China(No.61371075)Beijing Municipal Science and Technology Project(No.D171100006317001)
文摘This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based on Channel State Information(CSI) between the legitimate transmitter(Alice) and the legitimate receiver(Bob).Different from existing secure transmission schemes, the proposed scheme does not require CSI between Alice and the eavesdropper(Eve). The proposed scheme is proven to be reliable and shown to be capable of transmitting information securely under Amplify-and-Forward(AF) relay protocol, thereby providing security against passive and active attackers.