To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is pro...To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.展开更多
A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for...A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.展开更多
A kind of Combined Constant Modulus Algorithm (CCMA) is presented to compensate the defects of the Constant Modulus Algorithm (CMA) and the Sign Error CMA (SECMA). And CCMA is applied to the equalization of the underw...A kind of Combined Constant Modulus Algorithm (CCMA) is presented to compensate the defects of the Constant Modulus Algorithm (CMA) and the Sign Error CMA (SECMA). And CCMA is applied to the equalization of the underwater acoustic channel (UWAC). Based on the decision of the equalizer’s output, its iteration process switches between展开更多
基金Supported by National Natural Science Foundation of China (No. 60872123)Joint Fund of National Natural Science Foundation of China and Guangdong Provincial Natural Science Foundation (No. U0835001)Fundamental Research Funds for Central Universities (No. 2011ZM0033)
文摘To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.
基金the National Natural Science Foundation of China (60072001)
文摘A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.
基金This work was supported by the National Defense Science & Technology Key Lab.(5144010201HK0302)
文摘A kind of Combined Constant Modulus Algorithm (CCMA) is presented to compensate the defects of the Constant Modulus Algorithm (CMA) and the Sign Error CMA (SECMA). And CCMA is applied to the equalization of the underwater acoustic channel (UWAC). Based on the decision of the equalizer’s output, its iteration process switches between