Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ...The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.展开更多
The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with tim...The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ...Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.展开更多
Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big...Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.展开更多
Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of f...Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.展开更多
In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of un...In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.展开更多
With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,w...With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.展开更多
With the research of the upcoming sixth generation(6 G) systems, new technologies will require wider bandwidth, larger scale antenna arrays and more diverse wireless communication scenarios on the future channel model...With the research of the upcoming sixth generation(6 G) systems, new technologies will require wider bandwidth, larger scale antenna arrays and more diverse wireless communication scenarios on the future channel modeling. Considering channel model is prerequisite for system design and performance evaluation of 6 G technologies, we face a challenging task: how to accurately and efficiently model 6 G channel for various scenarios? This paper tries to answer it. Firstly, the features of cluster-nuclei(CN) and principle of cluster-nuclei based channel model(CNCM) are introduced. Then, a novel modeling framework is proposed to implement CNCM,which consists four steps: propagation environment reconstruction, cluster-nuclei identification, multipath parameters generation, and channel coefficients generation. Three-dimensional environment with material information is utilized to map CN with scatterers in the propagation pathway. CN are identified by geometrical and electric field calculation based on environmental mapping, and multipath components within CN are calculated by statistical characteristics of angle, power and delay domains. Finally, we present a three-level verification structure to investigate the accuracy and complexity of channel modeling comprehensively. Simulation results reveal that CNCM can perform higher accuracy than geometrybased stochastic model while lower complexity compared with ray-tracing model for practical propagation environment.展开更多
In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an...In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.展开更多
For the sake of meeting the demand of data rates at terabit(Tbit)per second scale in future networks,the terahertz(THz)band is widely accepted as one of the potential key enabling technologies for next generation wire...For the sake of meeting the demand of data rates at terabit(Tbit)per second scale in future networks,the terahertz(THz)band is widely accepted as one of the potential key enabling technologies for next generation wireless communication systems.With the progressive development of THz devices,regrading THz communications at system level is increasing crucial and captured the interest of plenty of researchers.Within this scope,THz channel modeling serves as an indispensable and fundamental element.By surveying the latest literature findings,this paper reviews the problem of channel modeling in the THz band,with an emphasis on molecular absorption loss,misalignment fading and multipath fading,which are major influence factors in the THz channel modeling.Then,we focus on simulators and experiments in the THz band,after which we give a brief introduction on applications of THz channel models with respects to capacity,security,and sensing as examples.Finally,we discuss some key issues in the future THz channel modeling.展开更多
In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge am...In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.展开更多
Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where t...Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where the impact of UAV positions on the spatial channel characteristics is of particular importance.In this paper,we consider a UAV swarm-enabled virtual multiple input multiple output(MIMO)system,where multiple single-antenna UAVs cooperatively transmit to multiple ground users(GUs).We establish a common coordinate system,as well as a UAV swarm-oriented coordinate system,to describe the relative positions of the GUs and the UAV elements,respectively.Based on the established coordinate systems,geometric ray superposition method is applied to describe the spatial channel matrix.The proposed modeling framework can be directly used to describe the line-of-sight and two-ray propagations,and can be extended for including more practical spatial features such as multipath scattering,inter-UAV blockage,and random UAV jittering,etc.Based on the proposed model,we further analyze the spatial correlation among the virtual MIMO links of GUs located at different positions.Via extensive simulations,we show that thanks to the flexible deployment of UAVs,the virtual MIMO array structure can be conveniently configured to get desired channel properties,such as the channel capacity,eigenvalue and condition number distribution,and spatial correlation distribution.This shows the possibility and importance of exploiting a new design dimension,i.e.,the UAV swarm pattern,in such cooperative virtual MIMO systems.展开更多
This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving ...This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
Massive multiple-input multiple-output(MIMO)emerges as one of the most promising technologies for 5G mobile communication systems.Compared to the conventional MIMO channel models,channel researches and measurements sh...Massive multiple-input multiple-output(MIMO)emerges as one of the most promising technologies for 5G mobile communication systems.Compared to the conventional MIMO channel models,channel researches and measurements show that significant nonstationary properties rise in massive MIMO channels.Therefore,an accurate channel model is indispensable for the sake of massive MIMO system design and performance evaluation.This article presents an overview of methods of modeling non-stationary properties on both the array and time axes,which are mainly divided into two major categories:birth-death(BD)process and cluster visibility region(VR)method.The main concepts and theories are described,together with useful implementation guidelines.In conclusion,a comparison between these two methods is made.展开更多
In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the az...In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the azimuth and elevation planes in an environment where uniformly distributed scatterers are assumed to be present in hemispheroids around the base station(BS) and mobile station(MS). Using this channel model, we first derive the closed-form expression for the joint and marginal probability density functions of the angle-of-arrival and time-of-arrival measured at the BS and the MS corresponding to the azimuth and elevation angles. Next, we derive an expression for the Doppler spectral distribution caused by motion of the MSs. Furthermore, we analyze the performance of multiple-input multiple-output antenna systems numerically. The results show that the proposed 3D scattering channel model performs better than previously proposed two-dimensional(2D) models for indoor and outdoor environments. We compare the results with previous scattering channel models and measurement results to validate the generalizability of our model.展开更多
Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) chann...Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) channels. It consists of a line-of-sight(Lo S) and non-line-of-sight(NLo S) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e.the temporal autocorrelation function(ACF) and spatial cross correlation function(CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture.展开更多
It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a signific...It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-131).
文摘The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.
基金supported by the National Key R&D Program of China under grant 2020YFB1804901the National Natural Science Foundation of China under grant 62341102。
文摘The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金supported in part by National Key Research and Develop⁃ment Program of China under Grant No.2020YFB1807600.
文摘Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.
基金supported in part by National Natural Science Foundation of China (61322110, 6141101115)Doctoral Fund of Ministry of Education (201300051100013)
文摘Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.
基金supported by the Fundamental Research Funds for the Central Universities 2020JBZD005NSFC under Grant(61771036,61901029,U1834210,and 61725101)+4 种基金the State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2020ZZ005)Beijing Jiaotong Universitythe ZTE CorporationState Key Laboratory of Mobile Network and Mobile Multimedia TechnologyBeijing Natural Science Foundation under Grant L201023。
文摘Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.
基金support from the National Natural Science Foundation of China (Grant No. 61371110)Key R&D Program of Shandong Province (Grant No. 2016GGX101014)+1 种基金EU H2020 RISE TESTBED project (Grant No. 734325)the Fundamental Research Funds of Shandong University (No. 2017JC029)
文摘In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.
基金Hallym University Research Fund,2019(HRF-201905-013).
文摘With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.
基金supported by National Science Fund for Distinguished Young Scholars (No.61925102)Beijing University of Posts and TelecommunicationsChina Mobile Research Institute Joint Innovation Center。
文摘With the research of the upcoming sixth generation(6 G) systems, new technologies will require wider bandwidth, larger scale antenna arrays and more diverse wireless communication scenarios on the future channel modeling. Considering channel model is prerequisite for system design and performance evaluation of 6 G technologies, we face a challenging task: how to accurately and efficiently model 6 G channel for various scenarios? This paper tries to answer it. Firstly, the features of cluster-nuclei(CN) and principle of cluster-nuclei based channel model(CNCM) are introduced. Then, a novel modeling framework is proposed to implement CNCM,which consists four steps: propagation environment reconstruction, cluster-nuclei identification, multipath parameters generation, and channel coefficients generation. Three-dimensional environment with material information is utilized to map CN with scatterers in the propagation pathway. CN are identified by geometrical and electric field calculation based on environmental mapping, and multipath components within CN are calculated by statistical characteristics of angle, power and delay domains. Finally, we present a three-level verification structure to investigate the accuracy and complexity of channel modeling comprehensively. Simulation results reveal that CNCM can perform higher accuracy than geometrybased stochastic model while lower complexity compared with ray-tracing model for practical propagation environment.
基金partially supported by Nation Science Foundation of China (61661025, 61661026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022)
文摘In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.
基金supported by Zhejiang Lab(no.2020LC0AD01 and no.2020LC0AA03)the National Key Research and Development Program of China(2020YFB1805700,2018YFB1801500&2018YFB2201700)+1 种基金the National Natural Science Foundation of China under Grant 61771424the Natural Science Foundation of Zhejiang Province under Grant LZ18F010001.
文摘For the sake of meeting the demand of data rates at terabit(Tbit)per second scale in future networks,the terahertz(THz)band is widely accepted as one of the potential key enabling technologies for next generation wireless communication systems.With the progressive development of THz devices,regrading THz communications at system level is increasing crucial and captured the interest of plenty of researchers.Within this scope,THz channel modeling serves as an indispensable and fundamental element.By surveying the latest literature findings,this paper reviews the problem of channel modeling in the THz band,with an emphasis on molecular absorption loss,misalignment fading and multipath fading,which are major influence factors in the THz channel modeling.Then,we focus on simulators and experiments in the THz band,after which we give a brief introduction on applications of THz channel models with respects to capacity,security,and sensing as examples.Finally,we discuss some key issues in the future THz channel modeling.
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program)(No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.
基金supported by the National Key Research and Development Program of China(2018YFA0701602)the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004,62171240,61771264the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108。
文摘Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where the impact of UAV positions on the spatial channel characteristics is of particular importance.In this paper,we consider a UAV swarm-enabled virtual multiple input multiple output(MIMO)system,where multiple single-antenna UAVs cooperatively transmit to multiple ground users(GUs).We establish a common coordinate system,as well as a UAV swarm-oriented coordinate system,to describe the relative positions of the GUs and the UAV elements,respectively.Based on the established coordinate systems,geometric ray superposition method is applied to describe the spatial channel matrix.The proposed modeling framework can be directly used to describe the line-of-sight and two-ray propagations,and can be extended for including more practical spatial features such as multipath scattering,inter-UAV blockage,and random UAV jittering,etc.Based on the proposed model,we further analyze the spatial correlation among the virtual MIMO links of GUs located at different positions.Via extensive simulations,we show that thanks to the flexible deployment of UAVs,the virtual MIMO array structure can be conveniently configured to get desired channel properties,such as the channel capacity,eigenvalue and condition number distribution,and spatial correlation distribution.This shows the possibility and importance of exploiting a new design dimension,i.e.,the UAV swarm pattern,in such cooperative virtual MIMO systems.
基金supported by Shandong Agricultural University Funding of First-class DisciplinesShandong Agricultural University Key Cultivation Discipline Funding for NSFC Proposers+1 种基金supported by Grant of Beihang University Beidou Technology Transformation and Industrialization (BARI1709)Open Project of National Engineering Research Center for Information Technology in Agriculture (No.KF2015W003)
文摘This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
基金supported in part by the National Natural Science of Foundation for Creative Research Groups of China under Grant No.61421061Huawei Innovation Research Program.
文摘Massive multiple-input multiple-output(MIMO)emerges as one of the most promising technologies for 5G mobile communication systems.Compared to the conventional MIMO channel models,channel researches and measurements show that significant nonstationary properties rise in massive MIMO channels.Therefore,an accurate channel model is indispensable for the sake of massive MIMO system design and performance evaluation.This article presents an overview of methods of modeling non-stationary properties on both the array and time axes,which are mainly divided into two major categories:birth-death(BD)process and cluster visibility region(VR)method.The main concepts and theories are described,together with useful implementation guidelines.In conclusion,a comparison between these two methods is made.
基金supported by the National Nature Science Foundation of China (No.61471153)the Scientific and Technological Support Project (Industry) of Jiangsu Province (No. BE2011195)the Major Program of the Natural Science Foundation of Institution of Higher Education of Jiangsu Province (No. 14KJA510001)
文摘In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the azimuth and elevation planes in an environment where uniformly distributed scatterers are assumed to be present in hemispheroids around the base station(BS) and mobile station(MS). Using this channel model, we first derive the closed-form expression for the joint and marginal probability density functions of the angle-of-arrival and time-of-arrival measured at the BS and the MS corresponding to the azimuth and elevation angles. Next, we derive an expression for the Doppler spectral distribution caused by motion of the MSs. Furthermore, we analyze the performance of multiple-input multiple-output antenna systems numerically. The results show that the proposed 3D scattering channel model performs better than previously proposed two-dimensional(2D) models for indoor and outdoor environments. We compare the results with previous scattering channel models and measurement results to validate the generalizability of our model.
基金supported by the National Natural Science Foundation of China,No.62271250the National Key Scientific Instrument and Equipment Development Project,No.61827801+3 种基金Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry),No.BE2022067,BE2022067-1 and BE2022067-3the Natural Science Foundation of Jiangsu Province,No.BK20211182the open research fund of National Mobile Communications Research Laboratory,Southeast University,No.2022D04the Experimental technology research and development,No.SYJS202304Z。
文摘Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) channels. It consists of a line-of-sight(Lo S) and non-line-of-sight(NLo S) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e.the temporal autocorrelation function(ACF) and spatial cross correlation function(CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture.
基金supported by National Basic Research Program of China (NO 2012CB316002)China’s 863 Project (NO 2014AA01A703)+2 种基金National Major Projec (NO. 2014ZX03003002-002)Program for New Century Excellent Talents in University (NCET-13-0321)Tsinghua University Initiative Scientific Research Program (2011THZ02-2)
文摘It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.