Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channe...Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channel into several sub-band channels and model them independently.By considering frequency-dependent channel parameters,a novel analytical UWB channel model with continuous frequency response is proposed.The composite effect of all frequency components within the UWB channel on the channel impulse response(CIR)of delay domain is derived based on the continuous channel transfer function(CTF)of frequency domain.On this basis,a closed-form simulation model for UWB channels and geometry-based parameter calculation method are developed,which can guarantee the continuity of channel characteristics on the frequency domain and greatly reduce the simulation complexity.Finally,the proposed method is applied to generate UWB channel with 2 GHz bandwidth at sub-6GHz and millimeter wave(mmWave)bands,respectively.The channel measurements are also carried out to validate the proposed method.The simulated CIR and power gain are shown to be in good agreement with the measurement data.Moreover,the comparison results of power gain and Doppler power spectral density(DPSD)show that the proposed UWB channel model Received:Apr.23,2022 Revised:Jun.09,2022 Editor:Wei Fan achieves a good balance between the simulation accuracy and efficiency.展开更多
The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method. It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature a...The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method. It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.展开更多
The fixed level and dynamic denoising method was studied based on indoor-to-outdoor measured channel impulse responses ORs) at 5.25 GHz with radio frequency (RF) 100 MHz bandwidth. It is found that the dynamic rang...The fixed level and dynamic denoising method was studied based on indoor-to-outdoor measured channel impulse responses ORs) at 5.25 GHz with radio frequency (RF) 100 MHz bandwidth. It is found that the dynamic ranges, peak powers and noise floors of the IRs are with close correlations. The comparisons with different denoising methods are given by deriving the power delay profiles (PDPs), root mean square (RMS) delay spread (RMS DS), number of paths (NOPs) and Ricean K-factors. It is concluded that the traditional fixed level noise cut is under estimate of DS and NOPs. The Ricean K-factors are of little sensitive to noise cut irrespective of what kind of methods applied. The PDPs are not very sensitive to the fixed level noise cut, however, obvious changes can be found by dynamic noise cut. The dynamic noise cut is preferred when clear noise floors is observed and decided from the measured IRs, it's of importance in data post processing for wideband radio channel measurements as well as the relevant modeling work.展开更多
In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech ...In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech coding algorithm is given. The channel coder uses CRC check and a convolutional code. Interleaving is usedto randomize the channel bursts. The proposed half-rate codec is implemented with a single TMS320C30. Theinformal tests (based on MOS score) prove that our speech coder is of higher quality.展开更多
基金supported in part by the National Key Scientific Instrument and Equipment Development Project(No.61827801)in part by the National Natural Science Foundation of China(No.62271250)+2 种基金in part by Natural Science Foundation of Jiangsu Province(No.BK20211182)in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2022067 and BE2022067-3in part by China Scholarship Council,and in part by Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX220360.
文摘Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channel into several sub-band channels and model them independently.By considering frequency-dependent channel parameters,a novel analytical UWB channel model with continuous frequency response is proposed.The composite effect of all frequency components within the UWB channel on the channel impulse response(CIR)of delay domain is derived based on the continuous channel transfer function(CTF)of frequency domain.On this basis,a closed-form simulation model for UWB channels and geometry-based parameter calculation method are developed,which can guarantee the continuity of channel characteristics on the frequency domain and greatly reduce the simulation complexity.Finally,the proposed method is applied to generate UWB channel with 2 GHz bandwidth at sub-6GHz and millimeter wave(mmWave)bands,respectively.The channel measurements are also carried out to validate the proposed method.The simulated CIR and power gain are shown to be in good agreement with the measurement data.Moreover,the comparison results of power gain and Doppler power spectral density(DPSD)show that the proposed UWB channel model Received:Apr.23,2022 Revised:Jun.09,2022 Editor:Wei Fan achieves a good balance between the simulation accuracy and efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025), and the Natural Science Foundation of Hunan Normal University, China (Grant No 22040640).
文摘The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method. It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.
基金supported by the National Natural Science Foundation of China (61372051)the Hi-Tech Research and Development Program of China (2014AA01A701)The Measurements Were Performed in the Framework of the IST (IST-4-027756 WINNER II)
文摘The fixed level and dynamic denoising method was studied based on indoor-to-outdoor measured channel impulse responses ORs) at 5.25 GHz with radio frequency (RF) 100 MHz bandwidth. It is found that the dynamic ranges, peak powers and noise floors of the IRs are with close correlations. The comparisons with different denoising methods are given by deriving the power delay profiles (PDPs), root mean square (RMS) delay spread (RMS DS), number of paths (NOPs) and Ricean K-factors. It is concluded that the traditional fixed level noise cut is under estimate of DS and NOPs. The Ricean K-factors are of little sensitive to noise cut irrespective of what kind of methods applied. The PDPs are not very sensitive to the fixed level noise cut, however, obvious changes can be found by dynamic noise cut. The dynamic noise cut is preferred when clear noise floors is observed and decided from the measured IRs, it's of importance in data post processing for wideband radio channel measurements as well as the relevant modeling work.
文摘In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech coding algorithm is given. The channel coder uses CRC check and a convolutional code. Interleaving is usedto randomize the channel bursts. The proposed half-rate codec is implemented with a single TMS320C30. Theinformal tests (based on MOS score) prove that our speech coder is of higher quality.