With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,...With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,the promising filter bank multicarrier(FBMC)technique using offset quadrature amplitude modulation(OQAM)has been applied to Beyond 5G(B5G)industry IoT networks.However,due to the broadcasting nature of wireless channels,the FBMC-OQAMindustry IoT network is inevitably vulnerable to adversary attacks frommalicious IoT nodes.The FBMC-OQAMindustry cognitive radio network(ICRNet)is proposed to ensure security at the physical layer to tackle the above challenge.As a pivotal step of ICRNet,blind modulation recognition(BMR)can detect and recognize the modulation type of malicious signals.The previous works need to accomplish the BMR task of FBMC-OQAM signals in ICRNet nodes.A novel FBMC BMR algorithm is proposed with the transform channel convolution network(TCCNet)rather than a complicated two-dimensional convolution.Firstly,this is achieved by designing a low-complexity binary constellation diagram(BCD)gridding matrix as the input of TCCNet.Then,a transform channel convolution strategy is developed to convert the image-like BCD matrix into a serieslike data format,accelerating the BMR process while keeping discriminative features.Monte Carlo experimental results demonstrate that the proposed TCCNet obtains a performance gain of 8%and 40%over the traditional inphase/quadrature(I/Q)-based and constellation diagram(CD)-based methods at a signal noise ratio(SNR)of 12 dB,respectively.Moreover,the proposed TCCNet can achieve around 29.682 and 2.356 times faster than existing CD-Alex Network(CD-AlexNet)and I/Q-Convolutional Long Deep Neural Network(I/Q-CLDNN)algorithms,respectively.展开更多
With the deployment of small cells and device to device communications in future heterogeneous networks,in many situations we would encounter mobile radio channels with partly blocked line of sight component,which are...With the deployment of small cells and device to device communications in future heterogeneous networks,in many situations we would encounter mobile radio channels with partly blocked line of sight component,which are well modeled by the Rician shadowed(RS) fading channel.In this paper,by the usage of Kummer transformation,a simplified representation of the RS fading channel with integral fading parameter is given.It is a finite series representation involving only exponential function and low order polynomials.This allows engineers not only the closed-form expressions for exact performance analysis over RS fading channel,but also the insights on the system design tactics.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61671095,61371164)the Project of Key Laboratory of Signal and Information Processing of Chongqing(No.CSTC2009CA2003).
文摘With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,the promising filter bank multicarrier(FBMC)technique using offset quadrature amplitude modulation(OQAM)has been applied to Beyond 5G(B5G)industry IoT networks.However,due to the broadcasting nature of wireless channels,the FBMC-OQAMindustry IoT network is inevitably vulnerable to adversary attacks frommalicious IoT nodes.The FBMC-OQAMindustry cognitive radio network(ICRNet)is proposed to ensure security at the physical layer to tackle the above challenge.As a pivotal step of ICRNet,blind modulation recognition(BMR)can detect and recognize the modulation type of malicious signals.The previous works need to accomplish the BMR task of FBMC-OQAM signals in ICRNet nodes.A novel FBMC BMR algorithm is proposed with the transform channel convolution network(TCCNet)rather than a complicated two-dimensional convolution.Firstly,this is achieved by designing a low-complexity binary constellation diagram(BCD)gridding matrix as the input of TCCNet.Then,a transform channel convolution strategy is developed to convert the image-like BCD matrix into a serieslike data format,accelerating the BMR process while keeping discriminative features.Monte Carlo experimental results demonstrate that the proposed TCCNet obtains a performance gain of 8%and 40%over the traditional inphase/quadrature(I/Q)-based and constellation diagram(CD)-based methods at a signal noise ratio(SNR)of 12 dB,respectively.Moreover,the proposed TCCNet can achieve around 29.682 and 2.356 times faster than existing CD-Alex Network(CD-AlexNet)and I/Q-Convolutional Long Deep Neural Network(I/Q-CLDNN)algorithms,respectively.
基金sponsored by the National Natural Science Foundation of China under grant No.61171089the Training Program of the Major Research Plan of the National Natural Science Foundation of China under grant No.91438104
文摘With the deployment of small cells and device to device communications in future heterogeneous networks,in many situations we would encounter mobile radio channels with partly blocked line of sight component,which are well modeled by the Rician shadowed(RS) fading channel.In this paper,by the usage of Kummer transformation,a simplified representation of the RS fading channel with integral fading parameter is given.It is a finite series representation involving only exponential function and low order polynomials.This allows engineers not only the closed-form expressions for exact performance analysis over RS fading channel,but also the insights on the system design tactics.