期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A chaos genetic algorithm for optimizing an artificial neural network of predicting silicon content in hot metal 被引量:3
1
作者 Deling Zheng, Ruixin Liang, Ying Zhou, and Ying WangInformation Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期68-71,共4页
A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the... A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the population, the NICGA has the advantages of decreasingthe population size, enhancing the local search ability, and improving the computational efficiencyand optimization precision. In a multi4ayer feed forward neural network model for predicting thesilicon content in hot metal, the NICGA was used to optimize the connection weights and thresholdvalues of the neural network to improve the prediction precision. The application results show thatthe precision of predicting the silicon content has been increased. 展开更多
关键词 blast furnace OPTIMIZATION chaos genetic algorithm neural network silicon content prediction
下载PDF
New Iris Localization Method Based on Chaos Genetic Algorithm
2
作者 贾东立 Muhammad Khurram Khan 张家树 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期35-38,共4页
This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is... This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm. 展开更多
关键词 chaos genetic algorithm Iris localization Geometric primitive extraction
下载PDF
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
3
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm chaos genetic algorithm optimization efficiency
下载PDF
Intelligent decision support system of operation-optimization in copper smelting converter 被引量:1
4
作者 姚俊峰 梅炽 +2 位作者 彭小奇 周安梁 吴冬华 《Journal of Central South University of Technology》 2002年第2期138-141,共4页
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per... An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times. 展开更多
关键词 intelligent decision support system neural network pattern identification chaos genetic algorithm operation optimization copper smelting converter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部