The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for ...The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for oil-gas exploration.However,breakthrough in oil-gas exploration in the Mesozoic strata has not been achieved due to less seismic surveys.New long-off set seismic data were processed that acquired with dense grid with single source and single cable.In addition,the data were processed with 3D imaging method and fi ner processing was performed to highlight the target strata.Combining the new imaging result and other geological information,we conducted integrated interpretation and proposed an exploratory well A-1-1 for potential hydrocarbon.The result provides a reliable basis for achieving breakthroughs in oil and gas exploration in the Mesozoic strata in the northern South China Sea.展开更多
Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude ...Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude attribute of-90°phase component derived by phase decomposition is employed to detect Hydrocarbon in the zone of interest(ZOI)in Chaoshan Depression.And it is found that there are evident amplitude anomalies occurring around ZOI.Phase decomposition is applied to forward modeling results of the ZOI,and high amplitudes occur on the-90°phase component more or less when ZOI is charged with hydrocarbon,which shows that the amplitude abnormality in ZOI is probably caused by oil and gas accumulation.展开更多
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0208)the National Natural Science Foundation of China(No.41606030)+1 种基金the Science and Technology Program of Guangzhou(No.202102080363)the China Geological Survey projects(Nos.DD20190212,DD20190216)。
文摘The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for oil-gas exploration.However,breakthrough in oil-gas exploration in the Mesozoic strata has not been achieved due to less seismic surveys.New long-off set seismic data were processed that acquired with dense grid with single source and single cable.In addition,the data were processed with 3D imaging method and fi ner processing was performed to highlight the target strata.Combining the new imaging result and other geological information,we conducted integrated interpretation and proposed an exploratory well A-1-1 for potential hydrocarbon.The result provides a reliable basis for achieving breakthroughs in oil and gas exploration in the Mesozoic strata in the northern South China Sea.
基金Supported by“Investigation of Mesozoic Oil and Gas Resources in Northeast of the South China Sea,Project No.DD20190212”from China Geological Survey.
文摘Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude attribute of-90°phase component derived by phase decomposition is employed to detect Hydrocarbon in the zone of interest(ZOI)in Chaoshan Depression.And it is found that there are evident amplitude anomalies occurring around ZOI.Phase decomposition is applied to forward modeling results of the ZOI,and high amplitudes occur on the-90°phase component more or less when ZOI is charged with hydrocarbon,which shows that the amplitude abnormality in ZOI is probably caused by oil and gas accumulation.