Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is...6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.展开更多
AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes o...AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.展开更多
The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-bas...The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.展开更多
BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct ...BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.展开更多
The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of trauma...The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.展开更多
Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nul...Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.展开更多
The cerebral vasculature plays a significant role in the development of Alzheimer's disease(AD),however,the specific association between them remains unclear.In this paper,based on the benefits of photoacoustic im...The cerebral vasculature plays a significant role in the development of Alzheimer's disease(AD),however,the specific association between them remains unclear.In this paper,based on the benefits of photoacoustic imaging(PAI),including label-free,high-resolution,in vivo imaging of vessels,we investigated the structural changes of cerebral vascular in wild-type(WT)mice and AD mice at different ages,analyzed the characteristics of the vascular in different brain regions,and correlated vascular characteristics with cognitive behaviors.The results showed that vascular density and vascular branching index in the cortical and frontal regions of both WT and AD mice decreased with age.Meanwhile,vascular lacunarity increased with age,and the changes in vascular structure were more pronounced in AD mice.The trend of vascular dysfunction aligns with the worsening cognitive dysfunction as the disease progresses.Here,we utilized in vivo PAI to analyze the changes in vascular structure during the progression of AD,elucidating the spatial and temporal correlation with cognitive impairment,which will provide more intuitive data for the study of the correlation between cerebrovascular and the development of AD.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n...BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.展开更多
BACKGROUND Elizabethkingia miricola is a non-fermenting gram-negative bacterium,which was first isolated from the condensate of the Russian peace space station in 2003.Most studies on this bacterium have been carried ...BACKGROUND Elizabethkingia miricola is a non-fermenting gram-negative bacterium,which was first isolated from the condensate of the Russian peace space station in 2003.Most studies on this bacterium have been carried out in the laboratory,and clinical case studies are rare.To date,a total of 6 clinical cases have been reported worldwide.CASE SUMMARY We present the first case of postoperative pulmonary infection in a patient with intracerebral hemorrhage due to Elizabethkingia miricola.The imaging character-istics of pulmonary infection were identified and the formulation and selection of the clinical treatment plan for this patient are discussed.CONCLUSION Elizabethkingia miricola infection is rare.When pulmonary infection occurs,computed tomography imaging may show diffuse distribution of a ground glass density shadow in both lungs,the air containing bronchial sign in local areas,thickening of bronchial vascular bundle,and pleural effusion.展开更多
Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with s...Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with severe COVID-19 who tested positive by the nucleic acid test in our hospital were selected,mainly focusing on the morphology,distribution characteristics,and dynamic changes of the first CT findings.Results:3 patients with severe pneumonia were older,with one aged 80.The first chest CT examination for all 3 patients differed.Imaging showed a leafy distribution of consolidation,primarily affecting the lower lobes of both lungs and extending subpleurally.A grid-like pattern was observed,along with changes in the consolidation and air bronchogram.These changes had slower absorption,especially in patients with underlying diseases.Conclusion:CT manifestations of severe COVID-19 have specific characteristics and the analysis of their characteristics and dynamic changes provide valuable insights for clinical treatment.展开更多
Liver cancer is one of the main malignant tumors in the digestive system.Early detection and treatment have positive significance in improving patient prognosis and reducing mortality.MRI is the main method for liver ...Liver cancer is one of the main malignant tumors in the digestive system.Early detection and treatment have positive significance in improving patient prognosis and reducing mortality.MRI is the main method for liver cancer examination,which mainly uses computers to compare imaging of different energy regions of tumors,observe the density and signal changes of liver cancer,and the degree of tumor enhancement.In particular,various new MRI functional imaging technologies,such as diffusion-weighted imaging,perfusion weighted imaging,delayed imaging,liver cell specific contrast agent enhanced imaging,etc.,can be used at the molecular level Multiple aspects such as cell function provide clinicians with richer diagnostic information.Therefore,further comparative analysis of MRI manifestations and pathological results of liver cancer can help to gain a deeper understanding of the biological behavior of tumors and provide a basis for treatment decision-making and prognosis evaluation.展开更多
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi...A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.展开更多
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe...Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.展开更多
Collagen provides tissue strength and structural integrity.Quanti fication of the orientated dispersion of collagen fibers is an important factor when studying the mechanical properties of the cervix.In this study,for...Collagen provides tissue strength and structural integrity.Quanti fication of the orientated dispersion of collagen fibers is an important factor when studying the mechanical properties of the cervix.In this study,for the first time,a new method for rapid characterization of the collagen fiber orientations of the cervix using linearly polarized light colposcopy is presented.A total of 24 colposcopic images were captured using a cross-polarized imaging system with white LED light sources.In the preprocessing stage,the Red channel of the RGB image was chosen,which contains no information of the blood vessels because of the low-absorption of blood cells in the red region.OrientationJ,which is an ImageJ plug-in,was used to estimate the local orientation of the collagen fibers.The result shows that in the nonpregnant cervix,the middle zone(Zone 2)has circumferentially aligned collagen fibers while the inner zone(Zone 1)has randomly arranged.The collagen fiber dispersion in Zone 2 is much smaller than that in Zone 1 at all four quadrants region(anterior,posterior,left,and right quadrant).This new analysis technique could potentially combine with diagnostic tools to provide a quantitative platform of collagen fibers in the clinic.展开更多
Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neu...Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金supported by the Inner Mongolia Natural Science Fund Project(2019MS06013)Ordos Science and Technology Plan Project(2022YY041)Hunan Enterprise Science and Technology Commissioner Program(2021GK5042).
文摘6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.
基金Supported by Zhejiang Medical Health Science and Technology Project(No.2023KY490).
文摘AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.
文摘The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.
文摘BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.
基金Supported by the Science and Technology Program of Nantong Health Committee,No.MA2019003 and No.MA2021017Science and Technology Program of Nantong City,No.Key003 and No.JCZ2022040Kangda College of Nanjing Medical University,No.KD2021JYYJYB025,No.KD2022KYJJZD019,and No.KD2022KYJJZD022.
文摘The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.
文摘Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.
基金supported by STI2030-Major Projects 2022ZD0212200,Hainan Province Key Area R&D Program(KJRC2023C30,ZDYF2021SHFZ094)Project of Collaborative Innovation Center of One Health(XTCX2022JKB02).
文摘The cerebral vasculature plays a significant role in the development of Alzheimer's disease(AD),however,the specific association between them remains unclear.In this paper,based on the benefits of photoacoustic imaging(PAI),including label-free,high-resolution,in vivo imaging of vessels,we investigated the structural changes of cerebral vascular in wild-type(WT)mice and AD mice at different ages,analyzed the characteristics of the vascular in different brain regions,and correlated vascular characteristics with cognitive behaviors.The results showed that vascular density and vascular branching index in the cortical and frontal regions of both WT and AD mice decreased with age.Meanwhile,vascular lacunarity increased with age,and the changes in vascular structure were more pronounced in AD mice.The trend of vascular dysfunction aligns with the worsening cognitive dysfunction as the disease progresses.Here,we utilized in vivo PAI to analyze the changes in vascular structure during the progression of AD,elucidating the spatial and temporal correlation with cognitive impairment,which will provide more intuitive data for the study of the correlation between cerebrovascular and the development of AD.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
基金This study was approved by the Medical Ethics Committee of Beijing Tsinghua Changgung Hospital(20002-0-02).
文摘BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.
文摘BACKGROUND Elizabethkingia miricola is a non-fermenting gram-negative bacterium,which was first isolated from the condensate of the Russian peace space station in 2003.Most studies on this bacterium have been carried out in the laboratory,and clinical case studies are rare.To date,a total of 6 clinical cases have been reported worldwide.CASE SUMMARY We present the first case of postoperative pulmonary infection in a patient with intracerebral hemorrhage due to Elizabethkingia miricola.The imaging character-istics of pulmonary infection were identified and the formulation and selection of the clinical treatment plan for this patient are discussed.CONCLUSION Elizabethkingia miricola infection is rare.When pulmonary infection occurs,computed tomography imaging may show diffuse distribution of a ground glass density shadow in both lungs,the air containing bronchial sign in local areas,thickening of bronchial vascular bundle,and pleural effusion.
基金Qinghai Provincial Health Commission Medical and Health Science and Technology Project Guiding Topics“Analysis of Dynamic Changes in Chest Imaging of New Coronavirus Pneumonia in Qinghai Province”(2022-wjzdx-63)。
文摘Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with severe COVID-19 who tested positive by the nucleic acid test in our hospital were selected,mainly focusing on the morphology,distribution characteristics,and dynamic changes of the first CT findings.Results:3 patients with severe pneumonia were older,with one aged 80.The first chest CT examination for all 3 patients differed.Imaging showed a leafy distribution of consolidation,primarily affecting the lower lobes of both lungs and extending subpleurally.A grid-like pattern was observed,along with changes in the consolidation and air bronchogram.These changes had slower absorption,especially in patients with underlying diseases.Conclusion:CT manifestations of severe COVID-19 have specific characteristics and the analysis of their characteristics and dynamic changes provide valuable insights for clinical treatment.
文摘Liver cancer is one of the main malignant tumors in the digestive system.Early detection and treatment have positive significance in improving patient prognosis and reducing mortality.MRI is the main method for liver cancer examination,which mainly uses computers to compare imaging of different energy regions of tumors,observe the density and signal changes of liver cancer,and the degree of tumor enhancement.In particular,various new MRI functional imaging technologies,such as diffusion-weighted imaging,perfusion weighted imaging,delayed imaging,liver cell specific contrast agent enhanced imaging,etc.,can be used at the molecular level Multiple aspects such as cell function provide clinicians with richer diagnostic information.Therefore,further comparative analysis of MRI manifestations and pathological results of liver cancer can help to gain a deeper understanding of the biological behavior of tumors and provide a basis for treatment decision-making and prognosis evaluation.
基金funded by the National Natural Science Foundation of China(41971226,41871357)the Major Research and Development and Achievement Transformation Projects of Qinghai,China(2022-QY-224)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28110502,XDA19030303).
文摘A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.
基金supported by science and technology projects of Gansu State Grid Corporation of China(52272220002U).
文摘Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.
基金supported by the Ho Chi Minh City Department of Science and Technology of Vietnam,under grant number 116/2020/HDQPTKHCN.
文摘Collagen provides tissue strength and structural integrity.Quanti fication of the orientated dispersion of collagen fibers is an important factor when studying the mechanical properties of the cervix.In this study,for the first time,a new method for rapid characterization of the collagen fiber orientations of the cervix using linearly polarized light colposcopy is presented.A total of 24 colposcopic images were captured using a cross-polarized imaging system with white LED light sources.In the preprocessing stage,the Red channel of the RGB image was chosen,which contains no information of the blood vessels because of the low-absorption of blood cells in the red region.OrientationJ,which is an ImageJ plug-in,was used to estimate the local orientation of the collagen fibers.The result shows that in the nonpregnant cervix,the middle zone(Zone 2)has circumferentially aligned collagen fibers while the inner zone(Zone 1)has randomly arranged.The collagen fiber dispersion in Zone 2 is much smaller than that in Zone 1 at all four quadrants region(anterior,posterior,left,and right quadrant).This new analysis technique could potentially combine with diagnostic tools to provide a quantitative platform of collagen fibers in the clinic.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.