A new descriptor, called vector of topological and structural information for coded and noncoded amino acids (VTSA), was derived by principal component analysis (PCA) from a matrix of 66 topological and structural var...A new descriptor, called vector of topological and structural information for coded and noncoded amino acids (VTSA), was derived by principal component analysis (PCA) from a matrix of 66 topological and structural variables of 134 amino acids. The VTSA vector was then applied into two sets of peptide quantitative structure-activity relationships or quantitative sequence-activity modelings (QSARs/QSAMs). Molded by genetic partial least squares (GPLS), support vector machine (SVM), and immune neural network (INN), good results were obtained. For the datasets of 58 angiotensin converting enzyme inhibitors (ACEI) and 89 elastase substrate catalyzed kinetics (ESCK), the R 2, cross-validation R 2, and root mean square error of estimation (RMSEE) were as follows: ACEI, R cu 2 ?0.82, Q cu 2 ?0.77, E rmse?0.44 (GPLS+SVM); ESCK, R cu 2 ?0.84, Q cu 2 ?0.82, E rmse?0.20 (GPLS+INN), respectively.展开更多
基金the Foundations of National High Technology (863) Programme (Grant No. 2006AA02Z312)State New Drug Project (Grant No. 1996ND1035A01)+4 种基金Fok- Yingtung Educational Foundation (Grant No. 980706)State Key Laboratory of Chemo/Biosensing and Chemometrics Foundation (Grant No. KLCB005-0012)Chongqing University Innovation Fund (Grant No. CUIF030506)Chongqing Mu-nicipality Applied Science Fund (Grant No. CASF01-3-6)Momentous Juche Innovation Fund for Tackle Key Problem Items (Grant No. MJIF 06-9-9)
文摘A new descriptor, called vector of topological and structural information for coded and noncoded amino acids (VTSA), was derived by principal component analysis (PCA) from a matrix of 66 topological and structural variables of 134 amino acids. The VTSA vector was then applied into two sets of peptide quantitative structure-activity relationships or quantitative sequence-activity modelings (QSARs/QSAMs). Molded by genetic partial least squares (GPLS), support vector machine (SVM), and immune neural network (INN), good results were obtained. For the datasets of 58 angiotensin converting enzyme inhibitors (ACEI) and 89 elastase substrate catalyzed kinetics (ESCK), the R 2, cross-validation R 2, and root mean square error of estimation (RMSEE) were as follows: ACEI, R cu 2 ?0.82, Q cu 2 ?0.77, E rmse?0.44 (GPLS+SVM); ESCK, R cu 2 ?0.84, Q cu 2 ?0.82, E rmse?0.20 (GPLS+INN), respectively.