To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models...To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.展开更多
The aim of this work was to determine the characteristic dimension governing transfers during convective dryin</span></span><span style="white-space:normal;"><span style="font-famil...The aim of this work was to determine the characteristic dimension governing transfers during convective dryin</span></span><span style="white-space:normal;"><span style="font-family:"">g</span></span><span style="white-space:normal;"><span style="font-family:"">. Parallelepipedic and cylindrical form of sweet potato was used. For the parallelepipedic form P_L-l-e, the thickness e is set to 1</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">cm while the length L and the width l are varying. The results show that the variation of the other dimensions other than the thickness e does not influence the transfers in a considerable way. The same observation is made for the cylindrical samples c_H-R by keeping the radius R constant. This present work therefore allows us to conclude that the thickness of the parallelepiped shaped samples and the radius of the cylindrical shapes, all being the smallest dimensions, characterize the transfers.展开更多
This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. Th...This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. This characteristic dimension corresponds to the diameter D for the sphere, to the edge a for the cube and the diameter = height D = H for the cylinder. Unlike the sphere where this characteristic dimension is perfect, the cubic and cylindrical shapes have space factors which are, among other things, angles and borders. By fixing the same characteristic dimensions, we end up with overlapping curves, showing identical and uniform transfers.展开更多
The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-har...The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.展开更多
Based on the first invariant of stress singular field in the vicinity of running tip of an interface crack, mapping equations of the caustic curve on the reference plane and the initial curve on the specimen plane are...Based on the first invariant of stress singular field in the vicinity of running tip of an interface crack, mapping equations of the caustic curve on the reference plane and the initial curve on the specimen plane are developed. The dynamic caustics are analyzed for the crack propagating along the interface between two bonded dissimilar materials. The variation of the caustic configurations is shown with the velocity change of the running crack and the ratio change of the stress intensity factors. Two characteristic dimensions are proposed that are not only practically measurable from optical caustic contours but also suitable to represent the behavior of transient caustics.展开更多
In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estim...In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estimated. This influence is limited by its form of cut. Comparing cubic form and parallelepiped (slice) one;results seem to show that thickness is the most important parameter governing the transfer phenomena during foodstuff convective drying. Three slices with thickness of 0.5 cm and surface area of 17, 82 and 112 cm2 respectively, dry better than cubic sample with a = 1 cm or a = 2 cm of arrest and having respectively 6 and 24 cm2 of surface area. All things seem to show that initial surface is not only the essential parameter;but also the thickness of the sample must be taken into account. Indeed, all of the samples with equal thickness (0.5 cm) and different exchange surfaces dry at the same time, about 210 min, comparing with cubic form 1 cm of arrest and 6 cm2 of surface and drying time of 230 min. A new parameter noted Dc called characteristic diameter is so considered to bridge the gaps. It is defined to be the diameter of the biggest sphere we can cut into a sample. This parameter is independent of form of the sample, and time increase with characteristic diameter increasing.展开更多
An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension ...An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension L represents the linear scale of micromotors. Electromagnetic driving force is proportional to high-order power of characteristic dimension L whereas electrostatic driving force is not. So, in micro domain, the effect of electrostatic force is larger than that of electromagnetic force, which makes electrostatic micromotor more competitive against electromagnetic alternative in MEMS. In assessing the performance of a micromotor, the power per unit volume and efficiency are the two most important criteria. Hence, the two kinds of micromotors are further compared from these two aspects. The results indicate that electrostatic a micromotor has higher power per unit volume and efficiency, moreover, its structure is simple, it can be made sufficiently small. For those advantages of electrostatic micromotors, they can be used in optical devices, aerospace equipment and medical instruments.展开更多
The Brownian rough path is the canonical lifting of Brownian motion to the free nilpotent Lie group of order 2. Equivalently, it is a process taking values in the algebra of Lie polynomials of degree 2, which is descr...The Brownian rough path is the canonical lifting of Brownian motion to the free nilpotent Lie group of order 2. Equivalently, it is a process taking values in the algebra of Lie polynomials of degree 2, which is described explicitly by the Brownian motion coupled with its area process. The aim of this article is to compute the finite dimensional characteristic functions of the Brownian rough path in IRd and obtain an explicit formula for the case when d = 2.展开更多
Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This arti...Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This article empiri- cally reports the effects of the process parameters, i.e., the layer thickness, raster angle, raster width, air gap, part orientation, and their interactions on the accuracy of the length, width, and thicknes, of acrylonitrile-butadiene- styrene (ABSP 400) parts fabricated using the FDM tech- nique. It was found that contraction prevailed along the directions of the length and width, whereas the thickness increased from the desired value of the fabricated part. Optimum parameter settings to minimize the responses, such as the change in length, width, and thickness of the test specimen, have been determined using Taguchi's parameter design. Because Taguchi's philosophy fails to obtain uniform optimal factor settings for each response, in this study, a fuzzy inference system combined with the Taguchi philosophy has been adopted to generate a single response from three responses, to reach the specific target values with the overall optimum factor level settings. Further, Taguchi and artificial neural network predictive models are also presented in this study for an accuracy evaluation within the dimensions of the FDM fabricated parts, subjected to various operating conditions. The pre- dicted values obtained from both models are in good agreement with the values from the experiment data, with mean absolute percentage errors of 3.16 and 0.15, respectively. Finally, the confirmatory test results showed an improvement in the multi-response performance index of 0.454 when using the optimal FDM parameters over the initial values.展开更多
基金the National Natural Science Foundation of China (1047202510672036)the Natural Science Foundation of Liaoning Province,China (20032109)
文摘To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.
文摘The aim of this work was to determine the characteristic dimension governing transfers during convective dryin</span></span><span style="white-space:normal;"><span style="font-family:"">g</span></span><span style="white-space:normal;"><span style="font-family:"">. Parallelepipedic and cylindrical form of sweet potato was used. For the parallelepipedic form P_L-l-e, the thickness e is set to 1</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">cm while the length L and the width l are varying. The results show that the variation of the other dimensions other than the thickness e does not influence the transfers in a considerable way. The same observation is made for the cylindrical samples c_H-R by keeping the radius R constant. This present work therefore allows us to conclude that the thickness of the parallelepiped shaped samples and the radius of the cylindrical shapes, all being the smallest dimensions, characterize the transfers.
文摘This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. This characteristic dimension corresponds to the diameter D for the sphere, to the edge a for the cube and the diameter = height D = H for the cylinder. Unlike the sphere where this characteristic dimension is perfect, the cubic and cylindrical shapes have space factors which are, among other things, angles and borders. By fixing the same characteristic dimensions, we end up with overlapping curves, showing identical and uniform transfers.
基金Project supported by the National Natural Science Foundation of China (No.50275024)
文摘The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.
基金The project supported by the National Natural Science Foundation of Chinathe Scientific Commission of Yunnan Province of China
文摘Based on the first invariant of stress singular field in the vicinity of running tip of an interface crack, mapping equations of the caustic curve on the reference plane and the initial curve on the specimen plane are developed. The dynamic caustics are analyzed for the crack propagating along the interface between two bonded dissimilar materials. The variation of the caustic configurations is shown with the velocity change of the running crack and the ratio change of the stress intensity factors. Two characteristic dimensions are proposed that are not only practically measurable from optical caustic contours but also suitable to represent the behavior of transient caustics.
文摘In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estimated. This influence is limited by its form of cut. Comparing cubic form and parallelepiped (slice) one;results seem to show that thickness is the most important parameter governing the transfer phenomena during foodstuff convective drying. Three slices with thickness of 0.5 cm and surface area of 17, 82 and 112 cm2 respectively, dry better than cubic sample with a = 1 cm or a = 2 cm of arrest and having respectively 6 and 24 cm2 of surface area. All things seem to show that initial surface is not only the essential parameter;but also the thickness of the sample must be taken into account. Indeed, all of the samples with equal thickness (0.5 cm) and different exchange surfaces dry at the same time, about 210 min, comparing with cubic form 1 cm of arrest and 6 cm2 of surface and drying time of 230 min. A new parameter noted Dc called characteristic diameter is so considered to bridge the gaps. It is defined to be the diameter of the biggest sphere we can cut into a sample. This parameter is independent of form of the sample, and time increase with characteristic diameter increasing.
文摘An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension L represents the linear scale of micromotors. Electromagnetic driving force is proportional to high-order power of characteristic dimension L whereas electrostatic driving force is not. So, in micro domain, the effect of electrostatic force is larger than that of electromagnetic force, which makes electrostatic micromotor more competitive against electromagnetic alternative in MEMS. In assessing the performance of a micromotor, the power per unit volume and efficiency are the two most important criteria. Hence, the two kinds of micromotors are further compared from these two aspects. The results indicate that electrostatic a micromotor has higher power per unit volume and efficiency, moreover, its structure is simple, it can be made sufficiently small. For those advantages of electrostatic micromotors, they can be used in optical devices, aerospace equipment and medical instruments.
文摘The Brownian rough path is the canonical lifting of Brownian motion to the free nilpotent Lie group of order 2. Equivalently, it is a process taking values in the algebra of Lie polynomials of degree 2, which is described explicitly by the Brownian motion coupled with its area process. The aim of this article is to compute the finite dimensional characteristic functions of the Brownian rough path in IRd and obtain an explicit formula for the case when d = 2.
文摘Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This article empiri- cally reports the effects of the process parameters, i.e., the layer thickness, raster angle, raster width, air gap, part orientation, and their interactions on the accuracy of the length, width, and thicknes, of acrylonitrile-butadiene- styrene (ABSP 400) parts fabricated using the FDM tech- nique. It was found that contraction prevailed along the directions of the length and width, whereas the thickness increased from the desired value of the fabricated part. Optimum parameter settings to minimize the responses, such as the change in length, width, and thickness of the test specimen, have been determined using Taguchi's parameter design. Because Taguchi's philosophy fails to obtain uniform optimal factor settings for each response, in this study, a fuzzy inference system combined with the Taguchi philosophy has been adopted to generate a single response from three responses, to reach the specific target values with the overall optimum factor level settings. Further, Taguchi and artificial neural network predictive models are also presented in this study for an accuracy evaluation within the dimensions of the FDM fabricated parts, subjected to various operating conditions. The pre- dicted values obtained from both models are in good agreement with the values from the experiment data, with mean absolute percentage errors of 3.16 and 0.15, respectively. Finally, the confirmatory test results showed an improvement in the multi-response performance index of 0.454 when using the optimal FDM parameters over the initial values.