BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distin...BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch...Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he...The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.展开更多
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different ...The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin wer...The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.展开更多
In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropi...In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropical cyclones(TCs)in the Western Pacific produce TRP over China.The peak months for TRP are July and August.The four key regions of TRP are the adjacent areas between the Sichuan and Shaanxi Provinces,the northern coast of the Bohai Sea,the coast of the Yellow Sea,and the southern coast area.The typical distance between the station with TRP and the TC center ranges from 1500 to 2500 km.Most of these stations are situated north to 60°west of north of the TC.The south–west water vapor transportation on the west side of the TC is crucial to TRP.TRP has a decreasing trend because of the decrease in the number of TCs that generate TRP.From the perspective of large-scale environmental conditions,a decrease in the integrated horizontal water vapor transport in China' Mainland,the weakening of upward motion at approximately 25°–35°N,which is inconducive to convection,and an increase in low-level vertical wind shear,which is unfavorable for the development of TC in areas with high frequencies of TRP-related TCs,are the factors that result in the decreasing trend of TRP.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t...Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.展开更多
The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transfo...The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transformation role of the fault on its east is not yet clear.This study uses data fusion to obtain denser GPS observations near the Qinghai Nanshan fault.Based on tectonic characteristics,we establish a block model to investigate the fault slip rate,locking degree,and slip deficit.The results show that the Qinghai Nanshan fault slip rate is characterized by sinistral and convergent movement.Both the sinistral and convergent rates display a decreasing trend from west to east.The locking degree and slip deficit are higher in the western segment(with an average of about 0.74 and 1.1 mm/a)and lower in the eastern segment.Then,we construct a strain rate field using GPS observations to analyze the regional strain characteristics.The results indicate that along the fault,the western segment shows a larger shear strain rate and negative dilation rate.Regional earthquake records show that the frequency of earthquakes is lower near the fault.The joint results suggest that the western segment may have a higher earthquake risk.In addition,the insignificant fault slip rate in the eastern segment may indicate that it does not participate in the tectonic transformation among the Riyueshan,Lajishan,and West Qinling faults.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
基金Supported by Xi’an Health Commission Residential Training Base Construction Project,No.2023zp09.
文摘BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金supported by the Province Natural Science Foundation of Hunan,China (2022JJ5410)Special Project on Modern Agricultural Industrial Technology System Construction of Hunan,China (2022-67)。
文摘Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by the National Natural Science Foundation of China(No.51878127)the Fundamental Research Funds for the Central Universities(N180104013).
文摘The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
基金funded by the National Natural Science Foundation of China (No.32070371)the Innovation Team Funds of China West Normal University (No.KCXTD2022-4)+1 种基金the fund of Sichuan Meigu Dafegnding National Nature Reserve (No.mgdfd2022-13)Sichuan Micang Mountain National Nature Reserve (No.N5108212022000043)。
文摘The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金This work was financially supported by the National Natural Science Foundation of China(41972123,41922015)the Natural Science Foundation of Shandong Province(ZR2020QD036).
文摘The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1136)the National Natural Scientific Foundation of China (No.42275037)+2 种基金the Basic Research Fund of CAMS (No.2023Z016)the Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province (No.SCSF202202)supported by the Jiangsu Collaborative Innovation Center for Climate Change。
文摘In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropical cyclones(TCs)in the Western Pacific produce TRP over China.The peak months for TRP are July and August.The four key regions of TRP are the adjacent areas between the Sichuan and Shaanxi Provinces,the northern coast of the Bohai Sea,the coast of the Yellow Sea,and the southern coast area.The typical distance between the station with TRP and the TC center ranges from 1500 to 2500 km.Most of these stations are situated north to 60°west of north of the TC.The south–west water vapor transportation on the west side of the TC is crucial to TRP.TRP has a decreasing trend because of the decrease in the number of TCs that generate TRP.From the perspective of large-scale environmental conditions,a decrease in the integrated horizontal water vapor transport in China' Mainland,the weakening of upward motion at approximately 25°–35°N,which is inconducive to convection,and an increase in low-level vertical wind shear,which is unfavorable for the development of TC in areas with high frequencies of TRP-related TCs,are the factors that result in the decreasing trend of TRP.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金financially supported by the National Natural Science Foundation of China(Nos.52174239 and 52204284)。
文摘Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.
基金supported by the National Natural Science Foundation of China(41874011,42074007)the Fundamental Research Funds for the Central Universities(2042023kfyq01)。
文摘The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transformation role of the fault on its east is not yet clear.This study uses data fusion to obtain denser GPS observations near the Qinghai Nanshan fault.Based on tectonic characteristics,we establish a block model to investigate the fault slip rate,locking degree,and slip deficit.The results show that the Qinghai Nanshan fault slip rate is characterized by sinistral and convergent movement.Both the sinistral and convergent rates display a decreasing trend from west to east.The locking degree and slip deficit are higher in the western segment(with an average of about 0.74 and 1.1 mm/a)and lower in the eastern segment.Then,we construct a strain rate field using GPS observations to analyze the regional strain characteristics.The results indicate that along the fault,the western segment shows a larger shear strain rate and negative dilation rate.Regional earthquake records show that the frequency of earthquakes is lower near the fault.The joint results suggest that the western segment may have a higher earthquake risk.In addition,the insignificant fault slip rate in the eastern segment may indicate that it does not participate in the tectonic transformation among the Riyueshan,Lajishan,and West Qinling faults.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.