We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities hav...We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.展开更多
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero...Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.展开更多
The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parame...The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parameters are in agreement with experimental data. The hydrogen bonding between NH2 and I ions is found to have a crucial role in FAPbI3 stability. The first calculated band structure shows that HC(NH2)2PbI3 has a direct bandgap (1.02 eV) at R-point, lower than the bandgap (1.53 eV) of CH3NH3PbI3. The calculated density of states reveals that the strong hybridization of s(Pb)-p(I) orbital in valence band maximum plays an important role in the structural stability. The photo-generated effective electron mass and hole mass at R-point along the R-Γ and R-M directions are estimated to be smaller:me^*=0.06m0 and mh^*=0.08m0 respectively, which are consistent with the values experimentally observed from long range photocarrier transport. The elastic properties are also investigated for the first time, which shows that HC(NH2)2PbI3 is mechanically stable and ductile and has weaker strength of the average chemical bond. This work sheds light on the understanding of applications of HC(NH2)2PbI3 as the perovskite in a planar-heterojunction solar cell light absorber fabricated on flexible polymer substrates.展开更多
Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this se...Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.展开更多
Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), wer...Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), were reported. Electrochemistry studies indicated that PC61BM, bisPC61BM and trisPC61BM had step-up distributional lowest unoccupied molecular orbital (LUMO) energy. PSCs made by P3HT with above PC61BMs show a trend of enlarged open-circuit voltages, which is in good agreement with the energy difference between the LUMO of PC61BMs and the HOMO of P3HT. On the contrary, reduced short-circuit currents (Jsc) were observed. The investigation of photo responsibility, dynamics analysis based on photo-induced absorption of composite films, P3HT:PC61BMs and n-channel thin film field-effect transistors of PC61BMs suggested that the short polaron lifetimes and low carrier mobilities were response for reduced Jsc. All these results demonstrated that it was important to develop an electron acceptor which has both high carrier mobility, and good compatibility with the electron donor conjugated polymer for approaching high performance PSCs.展开更多
It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tun...It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tuning molec- ular crystal polymorphs (i.e., adjusting the same molecule with different packing arrangements in solid state) towards efficient charge transport and high performance devices. Here, the choice of solvent had a marked effect on con- trolling the growth of a-phase ribbon and β-phase platelet during crystallization for an indenofluorene (IF) π-extended tetrathiafulvalene (TTF)-based cruciform molecule, named as IF-TTF. The charge carrier mobility of the a-phase IF-TTF crystals was more than one order of magnitude higher than that of β-phase crystals, suggesting the importance of reasonably tuning molecular packing in solid state for the improvement of charge transport in organic semiconductors.展开更多
Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(...Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.展开更多
Large π-conjugated pyrene-phenazine monoimide and bisimides were synthesized by imine condensation reaction. These imides form well ordered 1D nanotapes upon self-assembly in solution. Electrochemical and electric co...Large π-conjugated pyrene-phenazine monoimide and bisimides were synthesized by imine condensation reaction. These imides form well ordered 1D nanotapes upon self-assembly in solution. Electrochemical and electric conductivity measurement reveal it can be served as an n-channel semiconductor with large charge carrier mobility up to 4.1 cm^2 V^-1 s^-1. Both alkylated imides are highly luminescent, and can be quenched via protonization using trifluoroacetic acid, which could be served as potential colorimetric acid sensors.展开更多
Copolyfluorenes are of great interest due to their ability to form thin films with tunable optical and electrical properties.In this paper,copolymers of polyfluorene with electron withdrawing dicyanostilbene and dicya...Copolyfluorenes are of great interest due to their ability to form thin films with tunable optical and electrical properties.In this paper,copolymers of polyfluorene with electron withdrawing dicyanostilbene and dicyanophenanthrene moieties were synthesized;their thin films were characterized by electron spectroscopy,cyclic voltammetry,electrical,and photoelectrical measurements.The mobility of charge carriers in the copolymers was measured for the first time,with the acceptor components providing balanced electron and hole mobilities of the order of 10^(-6) cm^(2)·V^(-1)·s^(-1).Photodetectors based on the copolymer/PTCDI heterojunction exhibited the photoresponse band extended into the green region due to the absorption of PTCDI and an increased photocurrent in the UV-blue absorption band of the copolymer,which is related to the absorption of photoluminescent emission of the copolymers in PTCDI.The presented approach to improving the performance of a polymer-based photodetector is promising in organic optoelectronics.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51172067)the Hunan Provincial Natural Science Fund for Distinguished Young Scholars,China(Grant No.13JJ1013)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130161110036)the New Century Excellent Talents in University,China(Grant No.NCET-12-0171.D)
文摘We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.
基金funded by Australian Research Council discovery project DP140103041Future Fellowship FT160100205
文摘Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.51572219)the Natural Science Foundation of Shaanxi Province,China(Grant No.2015JM1018)+3 种基金the Graduate Innovation Fund of Northwest University of China(Grant No.YJG15007)the Henan Provincial Foundation and Frontier Technology Research Program,China(Grant Nos.2013JCYJ12 and 2013JCYJ13)the Fund from Henan University of Technology,China(Grant No.2014YWQN08)the Natural Science Fund from the Henan Provincial Education Department,China(Grant No.16A140027)
文摘The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parameters are in agreement with experimental data. The hydrogen bonding between NH2 and I ions is found to have a crucial role in FAPbI3 stability. The first calculated band structure shows that HC(NH2)2PbI3 has a direct bandgap (1.02 eV) at R-point, lower than the bandgap (1.53 eV) of CH3NH3PbI3. The calculated density of states reveals that the strong hybridization of s(Pb)-p(I) orbital in valence band maximum plays an important role in the structural stability. The photo-generated effective electron mass and hole mass at R-point along the R-Γ and R-M directions are estimated to be smaller:me^*=0.06m0 and mh^*=0.08m0 respectively, which are consistent with the values experimentally observed from long range photocarrier transport. The elastic properties are also investigated for the first time, which shows that HC(NH2)2PbI3 is mechanically stable and ductile and has weaker strength of the average chemical bond. This work sheds light on the understanding of applications of HC(NH2)2PbI3 as the perovskite in a planar-heterojunction solar cell light absorber fabricated on flexible polymer substrates.
基金supported by the Key Laboratory for New Molecule Material DesignFunction of Tianshui Normal University+3 种基金the Scientific Research Projects of Middle-agedYoung Researchers in Tianshui Normal University (TSA1116)the National Natural Science Foundation of China (21071110)the Fund of the Educational Commission of Gansu Province (1108-03)
文摘Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.
基金Fund for Overseas Chinese Scholarsthe National Natural Science Foundation of China (50828301)
文摘Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), were reported. Electrochemistry studies indicated that PC61BM, bisPC61BM and trisPC61BM had step-up distributional lowest unoccupied molecular orbital (LUMO) energy. PSCs made by P3HT with above PC61BMs show a trend of enlarged open-circuit voltages, which is in good agreement with the energy difference between the LUMO of PC61BMs and the HOMO of P3HT. On the contrary, reduced short-circuit currents (Jsc) were observed. The investigation of photo responsibility, dynamics analysis based on photo-induced absorption of composite films, P3HT:PC61BMs and n-channel thin film field-effect transistors of PC61BMs suggested that the short polaron lifetimes and low carrier mobilities were response for reduced Jsc. All these results demonstrated that it was important to develop an electron acceptor which has both high carrier mobility, and good compatibility with the electron donor conjugated polymer for approaching high performance PSCs.
基金supported by Beijing NOVA Programme(Z131101000413038)Beijing Local College Innovation Team Improve Plan(IDHT20140512)+2 种基金the National Natural Science Foundation of China(91433115,91222203,91233205 and 51222306)the Ministry of Science and Technology of China(2013CB933403 and 2013CB933504)the University of Copenhagen
文摘It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tuning molec- ular crystal polymorphs (i.e., adjusting the same molecule with different packing arrangements in solid state) towards efficient charge transport and high performance devices. Here, the choice of solvent had a marked effect on con- trolling the growth of a-phase ribbon and β-phase platelet during crystallization for an indenofluorene (IF) π-extended tetrathiafulvalene (TTF)-based cruciform molecule, named as IF-TTF. The charge carrier mobility of the a-phase IF-TTF crystals was more than one order of magnitude higher than that of β-phase crystals, suggesting the importance of reasonably tuning molecular packing in solid state for the improvement of charge transport in organic semiconductors.
基金supported by the National Natural Science Foundation of China(21325416)
文摘Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.
基金supported by the National Natural Science Foundation of China(Nos. 51522303, 21602154)National Key R&D Program of China (No. 2017YFA0207500)the Thousand Youth Talents Plan
文摘Large π-conjugated pyrene-phenazine monoimide and bisimides were synthesized by imine condensation reaction. These imides form well ordered 1D nanotapes upon self-assembly in solution. Electrochemical and electric conductivity measurement reveal it can be served as an n-channel semiconductor with large charge carrier mobility up to 4.1 cm^2 V^-1 s^-1. Both alkylated imides are highly luminescent, and can be quenched via protonization using trifluoroacetic acid, which could be served as potential colorimetric acid sensors.
基金supported by the Russian Science Foundation(No.23-43-00060)financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment for scientific activity(No.122011300052-1).
文摘Copolyfluorenes are of great interest due to their ability to form thin films with tunable optical and electrical properties.In this paper,copolymers of polyfluorene with electron withdrawing dicyanostilbene and dicyanophenanthrene moieties were synthesized;their thin films were characterized by electron spectroscopy,cyclic voltammetry,electrical,and photoelectrical measurements.The mobility of charge carriers in the copolymers was measured for the first time,with the acceptor components providing balanced electron and hole mobilities of the order of 10^(-6) cm^(2)·V^(-1)·s^(-1).Photodetectors based on the copolymer/PTCDI heterojunction exhibited the photoresponse band extended into the green region due to the absorption of PTCDI and an increased photocurrent in the UV-blue absorption band of the copolymer,which is related to the absorption of photoluminescent emission of the copolymers in PTCDI.The presented approach to improving the performance of a polymer-based photodetector is promising in organic optoelectronics.