We use density functional theory and time-dependent together with a set of extensive mul- tidimensional visualization techniques to characterize the influence of keto effect on charge distribution at ground state and ...We use density functional theory and time-dependent together with a set of extensive mul- tidimensional visualization techniques to characterize the influence of keto effect on charge distribution at ground state and electronic transitions for neutral and charged hexaphyrin aromaticity with and without keto-defect. It is found that the aromaticity is the key fac- tor to influence the ground state Mulliken charges distribution properties, other than the meso-aryl-substituted effect. But with the enhancement of the keto-defect, the distribution changes of Mulliken charges on the hexaphyrin groups are larger than those on the pentaflu- orophenyl substituted groups, following with the aromaticity changes from nonaromatic to aromatic. Furthermore, through characterizing by transition density and charge difference density, direct visual evidence for neutral and charged aromaticity with and without keto- defect can be clearly derived, and the ability of charge transfer between units of monoradical (nonaromaticity) and singlet biradical (aromaticity) forms is much stronger than that of neutral forms.展开更多
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder...InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.展开更多
The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett. 7 (2005) 5019]. In this letter, the electron...The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett. 7 (2005) 5019]. In this letter, the electronic structure and excited state properties of the fluorine-substituted hexabenzocoronene are studied with quantum chemistry method as well as the transition and the charge difference densities. The transition densities show the orientations and strength of the dipole moments and the charge difference densities reveal the orientation and results of the intramolecular charge transfer. The calculated transition energies and oscillator strengths are consistent with the experimental data, and the theoretical results of transition and charge difference densities are valuable to understanding the excited state properties of the fluorine-substituted hexabenzocoronene.展开更多
Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated ...Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated polyelectrolytes were further studied with quantum chemistry methods.The calculation result shows that the absorption spectra are roughly in visible and ultraviolet light regions,and the two absorption peaks are located in the wavelength span 300-400 nm for charged polyelectrolytes.However,in neutral conjugated polyelectrolytes,the peaks of the absorption spectra showed a blue shift compared with those of the charged polyelectrolytes.Charge transfer (CT) properties of the studied compounds were also investigated with both the three-dimensional real-space analysis method of transition and charge difference densities,and the two-dimensional real-space analysis method of transition density matrices based on the simulated absorption spectra.The calculation results revealed the charge transfer in conjugated polyelectrolytes on the excitation states.展开更多
Recent studies suggest that the ratio of the shear modulus (G) to the bulk modulus (B) and the Poisson's ratio (ν) are good indicators of ductility.Using the method of supercell and the first-principles pseudopot...Recent studies suggest that the ratio of the shear modulus (G) to the bulk modulus (B) and the Poisson's ratio (ν) are good indicators of ductility.Using the method of supercell and the first-principles pseudopotential plane-wave method,the G/B and ν of the β-type Ti-Mo binary alloys with Mo molar fraction (xMo) ranging from 6.25% to 37.5% are calculated.The results show that the ductility of β-type Ti-Mo binary alloys first increases with increasing x Mo and reaches the maximum when x Mo is about 25%,and then reduces with more increasing x Mo.The charge density difference calculations suggest that the x Mo dependence of the ductility can be ascribed to the change of bonding characteristics between Ti and Mo atoms in the [111] direction.展开更多
文摘We use density functional theory and time-dependent together with a set of extensive mul- tidimensional visualization techniques to characterize the influence of keto effect on charge distribution at ground state and electronic transitions for neutral and charged hexaphyrin aromaticity with and without keto-defect. It is found that the aromaticity is the key fac- tor to influence the ground state Mulliken charges distribution properties, other than the meso-aryl-substituted effect. But with the enhancement of the keto-defect, the distribution changes of Mulliken charges on the hexaphyrin groups are larger than those on the pentaflu- orophenyl substituted groups, following with the aromaticity changes from nonaromatic to aromatic. Furthermore, through characterizing by transition density and charge difference density, direct visual evidence for neutral and charged aromaticity with and without keto- defect can be clearly derived, and the ability of charge transfer between units of monoradical (nonaromaticity) and singlet biradical (aromaticity) forms is much stronger than that of neutral forms.
基金the support of the National Natural Science Foundation of China (Grant No.62204030)supported in part by the National Natural Science Foundation of China (Grant Nos.62122036,62034004,61921005,61974176,and 12074176)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)。
文摘InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374040. The authors thank Dr. Meng-Tao Sun (Department of Chemical Physics, Lund University, Sweden) for stimulating discussions.
文摘The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett. 7 (2005) 5019]. In this letter, the electronic structure and excited state properties of the fluorine-substituted hexabenzocoronene are studied with quantum chemistry method as well as the transition and the charge difference densities. The transition densities show the orientations and strength of the dipole moments and the charge difference densities reveal the orientation and results of the intramolecular charge transfer. The calculated transition energies and oscillator strengths are consistent with the experimental data, and the theoretical results of transition and charge difference densities are valuable to understanding the excited state properties of the fluorine-substituted hexabenzocoronene.
基金supported by the National Natural Science Foundation of China (Grant Nos.11074210 and 20703032)the National Basic Research Project of China (Grant No.2009CB930703)
文摘Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated polyelectrolytes were further studied with quantum chemistry methods.The calculation result shows that the absorption spectra are roughly in visible and ultraviolet light regions,and the two absorption peaks are located in the wavelength span 300-400 nm for charged polyelectrolytes.However,in neutral conjugated polyelectrolytes,the peaks of the absorption spectra showed a blue shift compared with those of the charged polyelectrolytes.Charge transfer (CT) properties of the studied compounds were also investigated with both the three-dimensional real-space analysis method of transition and charge difference densities,and the two-dimensional real-space analysis method of transition density matrices based on the simulated absorption spectra.The calculation results revealed the charge transfer in conjugated polyelectrolytes on the excitation states.
基金the National Basic Research Program(973) of China (No.2007CB613802)the Research Fund of the State Key Laboratory of Solidification Processing of China (No.KP200912)
文摘Recent studies suggest that the ratio of the shear modulus (G) to the bulk modulus (B) and the Poisson's ratio (ν) are good indicators of ductility.Using the method of supercell and the first-principles pseudopotential plane-wave method,the G/B and ν of the β-type Ti-Mo binary alloys with Mo molar fraction (xMo) ranging from 6.25% to 37.5% are calculated.The results show that the ductility of β-type Ti-Mo binary alloys first increases with increasing x Mo and reaches the maximum when x Mo is about 25%,and then reduces with more increasing x Mo.The charge density difference calculations suggest that the x Mo dependence of the ductility can be ascribed to the change of bonding characteristics between Ti and Mo atoms in the [111] direction.