期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2 被引量:4
1
作者 董娟 许信 +4 位作者 石将建 李冬梅 罗艳红 孟庆波 陈强 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期210-213,共4页
ZnO nanorods are passivated with a TiO2 interracial layer and applied in the CH3NH3PbI3 perovskite solar cell, which prepared by the atomic layer deposition method show a positive effect on the tiff factor and power c... ZnO nanorods are passivated with a TiO2 interracial layer and applied in the CH3NH3PbI3 perovskite solar cell, which prepared by the atomic layer deposition method show a positive effect on the tiff factor and power conversion efficiency. With TiO2 interracial passivation, the charge recombination in the ZnO/CH3NH3PbI3 interface is effectively suppressed and the maximum power conversion efficiency is enhanced from 11.9% to 13.4%. 展开更多
关键词 ZNO Suppressing charge recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2 TiO
下载PDF
Initial measurement of ultrafast charge exchange recombination spectroscopy on the EAST tokamak
2
作者 蒋军 李颖颖 +5 位作者 陈冉 符佳 吕波 余羿 徐国盛 叶民友 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期40-46,共7页
Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here... Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs. 展开更多
关键词 ultrafast charge exchange recombination spectroscopy EAST diagnostic measurements
下载PDF
Suppression of charge recombination by application of CueZnSnS4-graphene counter electrode to thin dye-sensitized solar cells 被引量:1
3
作者 Yan Li Huafei Guo +2 位作者 Xiuqin Wang Ningyi Yuan Jianning Ding 《Science Bulletin》 SCIE EI CAS CSCD 2016年第15期1221-1230,共10页
This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- ... This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- cated for use as the photocathode in a DSSC. To improve the extraction and transfer of electrons, graphene was added to the CZTS. A DSSC with a 10-gin TiO2 pho- toanode layer exhibited a slightly degraded efficiency with a CZTS-graphene photocathode, relative to a Pt counter electrode (CE). Nevertheless, when the thickness of the TiO2 photoanode was reduced to 2 lam, the efficiency of a DSSC with a CZTS-graphene photocathode was greater than that of a Pt-DSSC. It is speculated that, unlike the Pt CE, a CZTS-graphene photocathode not only collects electrons from an external circuit and catalyzes the reduction of the triiodide ions in the electrolyte, but also utilizes unabsorbed photons to produce photo-excited electrons and suppresses charge recombination, thus enhancing the performance of the cell. The use of narrowband gap p-type semiconductors as photocathodes offers a new means of fabricating thin dye-sensitized solar cells and effectively improving the cell performance. 展开更多
关键词 Dye-sensitized solar cell Cu2ZnSnS4-graphene charge recombination
原文传递
Photovoltaic Performance and Charge Recombination Dynamics of P3HT/PCBM Blend Heterojunction
4
作者 YAO Jin-bo WANG Ying-hui ZHANG Han-zhuang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第6期1185-1188,共4页
We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensi- ty-dep... We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensi- ty-dependent charge recombination dynamics of heterojunction employing nanosecond transient absorption spectroscopy with bias light so as to simulate the photophysical process in heterojunction when the photovoltaic device is on operation. The experimental data exhibit that the yield of free charges gradually decreases and the loss of mobile carriers originated from bimolecular recombination simultaneously increases as the irradiation intensity gradually enhances. This indicates that the polymer solar cell is much suitably used at a low irradiation intensity. 展开更多
关键词 Polymer solar cell charge recombination Transient absorption
原文传递
Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak 被引量:1
5
作者 吴静 姚列明 +2 位作者 朱建华 韩晓玉 李文柱 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第11期953-957,共5页
This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the ... This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism. 展开更多
关键词 Keywords: neutral beam injection heating charge exchange recombination spectroscopydiagnostic impurity ion temperature toroidal rotation velocity
下载PDF
Charge Exchange Recombination Spectroscopy Based on Diagnostic Neutral Beam in HT-7 Tokamak 被引量:1
6
作者 石跃江 符佳 +15 位作者 李颖颖 William ROWAN 黄河 王福地 高慧贤 黄娟 周倩 刘胜 张健 李军 谢远来 刘智民 黄懿赟 胡纯栋 万宝年 DNB team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期11-14,共4页
Charge exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam (DNB) installed in the HT-7 tokamak is introduced. DNB can provide a 6 A extracted current at 50 kV for 0.1 s in hydrogen. It ca... Charge exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam (DNB) installed in the HT-7 tokamak is introduced. DNB can provide a 6 A extracted current at 50 kV for 0.1 s in hydrogen. It can penetrate into the core plasma in HT-7. The CXRS system is designed to observe charge exchange (CX) transitions in the visible spectrum. CX light from the beam is focused onto 10 optical fibers, which view the plasma from -5 cm to 20 cm. The CXRS system can measure the ion temperature as low as 0.1 keV. With CXRS, the local ion temperature profile in HT-7 was obtained for the first time. 展开更多
关键词 charge exchange recombination spectroscopy diagnostic neutral beam
下载PDF
Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak
7
作者 丁伯江 Sakamoto Yoshiteru^b Miura Yukitoshi^b 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3434-3442,共9页
With consideration of the effects of the atomic process and the sight line direction on the charge exchange re-combination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgra... With consideration of the effects of the atomic process and the sight line direction on the charge exchange re-combination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a 〈 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation. 展开更多
关键词 atomic process charge exchange recombination spectroscopy (CXRS) modification plasma
下载PDF
Time-resolved photoluminescence of anatase/rutile TiO_2 phase junction revealing charge separation dynamics 被引量:3
8
作者 王秀丽 沈帅 +1 位作者 冯兆池 李灿 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2059-2068,共10页
Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence... Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials. 展开更多
关键词 Titanium dioxide (TiO2)Anatase/rutile phase junctioncharge separation charge recombination Time-resolved photoluminescence
下载PDF
Energy level engineering of charge selective contact and halide perovskite by modulating band offset:Mechanistic insights 被引量:2
9
作者 Yassine Raoui Hamid Ez-Zahraouy +1 位作者 Samrana Kazim Shahzada Ahmad 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期822-829,共8页
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron... Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset. 展开更多
关键词 Device modelling Electron affinity Conduction band offset Valence band offset charge recombination Perovskite solar cell
下载PDF
Benzotriazole derivative inhibits nonradiative recombination and improves the UV-stability of inverted MAPbI_(3) perovskite solar cells
10
作者 Xiaoyu Deng Zhiyuan Cao +2 位作者 Chengbo Li Shurong Wang Feng Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期592-599,共8页
Suppressing the nonradiative recombination in the bulk and surface of perovskite film is highly desired to improve the power conversion efficiency(PCE)and stability of halide perovskite solar cells(PSCs).In this study... Suppressing the nonradiative recombination in the bulk and surface of perovskite film is highly desired to improve the power conversion efficiency(PCE)and stability of halide perovskite solar cells(PSCs).In this study,a benzotriazole derivative(6-chloro-1-hydroxybenzotriazole,Cl-HOBT)is applied to improve the crystallinity and reduce the trap density of methylammonium lead iodide(MAPbI3)perovskite film.Meanwhile,incorporation of Cl-HOBT elongates the photoluminescence carrier lifetime and chargerecombination lifetime,implying the trap-assisted nonradiative recombination is greatly suppressed.Besides,the improved energy level alignment and enhanced built-in potential are conducive to the charge carrier separation and transfer process with Cl-HOBT.Consequently,a PCE of 20.27%and an open-circuit voltage(Voc)of 1.09 V are achieved for the inverted MAPbI3 PSCs,along with an 85%maintaining of the initial PCE under stored at relative humidity of 20%for 500 h.Furthermore,the existence of Cl-HOBT could inhibit the formation of Pb0 defect under prolonged UV illumination to retard the degradation of perovskite film.It is believed that this study paves a novel path for the realization of highefficiency PSCs with UV-stability. 展开更多
关键词 Additive engineering charge recombination Carrier lifetime DEFECT Mobility
下载PDF
Influence of Recombination Centers on the Phase Portraits in Nanosized Semiconductor Films
11
作者 Gafur Gulyamov Abdurasul G. Gulyamov Feruza R. Muhitdinova 《Journal of Modern Physics》 2016年第13期1661-1667,共8页
Influence of recombination centers’ changes on the form of phase portraits has been studied. It has been shown that the shape of the phase portraits depends on the concentration of semiconductor materials’ recombina... Influence of recombination centers’ changes on the form of phase portraits has been studied. It has been shown that the shape of the phase portraits depends on the concentration of semiconductor materials’ recombination centers. 展开更多
关键词 recombination Centers Phase Portrait Generation of charge Carriers recombination of charge Carriers Forbidden Zone Absorption Coefficient
下载PDF
Reinforced SnO_(2) tensile-strength and“buffer-spring”interfaces for efficient inorganic perovskite solar cells
12
作者 Yuanyuan Zhao Lei Gao +6 位作者 Qiurui Wang Qiang Zhang Xiya Yang Jingwei Zhu Hao Huang Jialong Duan Qunwei Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期282-291,共10页
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce... Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days. 展开更多
关键词 charge recombination defect passivation inorganic perovskite solar cells interfacial modification strain relaxation
下载PDF
Photovoltaic Performance of Triphenylamine Dyes-sensitized Solar Cells Employing Cobalt Redox Shuttle and Influence of π-conjugated Spacers
13
作者 贾江南 唐恺 +3 位作者 梁茂 韩虹雨 武全萍 薛松 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期310-320,I0004,共12页
Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating ... Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)eobalt(Ⅱ/Ⅲ)-based redox elec- trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the w-conjugated spacers of organic dyes upon the photovoltage and photocur- rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination. 展开更多
关键词 Dye-sensitized solar cell Organic dye Cobalt redox shuttle Mass transport charge recombination
下载PDF
Tri-functionalized TiOxCl4-2x accessory layer to boost efficiency of hole-free, all-inorganic perovskite solar cells 被引量:2
14
作者 Qingwei Zhou Jialong Duan +2 位作者 Yudi Wang Xiya Yang Qunwei Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期1-8,共8页
Tin dioxide(SnO2) is generally regarded as a promising electron-transporting layer(ETL) for state-of-theart perovskite solar cells(PSCs), however, the ubiquitous oxygen-vacancy-related defects at SnO2 surface and the ... Tin dioxide(SnO2) is generally regarded as a promising electron-transporting layer(ETL) for state-of-theart perovskite solar cells(PSCs), however, the ubiquitous oxygen-vacancy-related defects at SnO2 surface and the large energy difference between conduction band of SnO2 and perovskite layer undoubtedly cause severe charge carrier recombination, resulting in sluggish charge extraction efficiency and non-negligible open-circuit voltage(Voc) loss. Herein, a chlorine-containing TiOxCl4-2x accessory layer is fabricated by immersing SnO2 layer into the TiCl4 aqueous solution to passivate the surface oxygen-vacancy-related defects of SnO2 layer and to set an intermediate energy level at ETL/perovskite interface in all-inorganic cesium lead tri-bromine(CsPbBr3) PSCs. Furthermore, the TiOxCl4-2x layer also improves the infiltration of SnO2 layer surface toward perovskite precursor for high-quality perovskite film. Finally, the hole-free, allinorganic CsPbBr3PSC with a structure of FTO/SnO2/TiOxCl4-2x/Cs0.91Rb0.09PbBr3/carbon achieves a champion efficiency of 10.44% with a Vocas high as 1.629 V in comparison to 8.31% for control device. Moreover, the optimized solar cell presents good stability in 80% humidity in air. 展开更多
关键词 All-inorganic perovskite solar cells Electron-transporting layer Cesium lead bromine charge recombination Stability
下载PDF
A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells 被引量:1
15
作者 Pengyun Liu Huimin Xiang +3 位作者 Wei Wang Ran Ran Wei Zhou Zongping Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期243-251,I0006,共10页
The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite fi... The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite films for reducing the number of defects. Lewis base-based additive engineering has been considered as an effective way to eliminate defects, especially the defects caused by the uncoordinated Pb^(2+). In this work, for the first time, a bilateral cyano molecule (succinonitrile, SN) which is a commonly used plasticizer in solid electrolyte of solid-state lithium batteries was selected as an additive to modify organic–inorganic hybrid perovskite films in PSCs. SN is featured with two cyano groups (–C≡N) distributing at both terminals of the carbon chain, providing two cross-linking points to interact with perovskites crystals via coordinating with uncoordinated Pb2+ and forming hydrogen bonds with –NH2 groups in perovskite. It was found that the addition of SN into perovskite precursor solution could effectively reduce defects, particularly inhibit the appearance of Pb0 and thus suppress trap-assisted nonradiative charge carrier recombination. As a result, the efficiency of CH_(3)NH_(3)PbI_(3)(Cl) (MAPbI_(3)(Cl))-based PSCs was improved from 18.4% to 20._(3)% with enhanced long-term stability at N2 and humid air atmosphere. This work provides a facile and effective strategy to enhance the PCE and stability of PSCs simultaneously, facilitating the commercialization of PSCs. 展开更多
关键词 Perovskite solar cells Succinonitrile additive Cyano groups Defect engineering Suppressed charge recombination
下载PDF
High performance of TiO_(2)/Cu_(x)O photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell 被引量:1
16
作者 Harin Yoo Doohwan Lee Jung Hyeun Kim 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期704-711,共8页
Photocatalysts for harvesting solar energy to either electricity or chemical fuels have attracted much attention recently, but they have big obstacles such as wide bandgaps and rapid charge recombinations to overcome ... Photocatalysts for harvesting solar energy to either electricity or chemical fuels have attracted much attention recently, but they have big obstacles such as wide bandgaps and rapid charge recombinations to overcome for final applications. In this study, we investigates a useful method to utilize vanadium redox pairs, which are commonly applied for vanadium redox flow batteries, to diminish charge recombinations and thus to enhance photocurrent response in regenerative solar energy storage. The results reveal significant improvements in photocurrent density by forming cuprous and cupric oxides in TiO_(2)/Cu_(x)O electrodes under solar AM 1.5 illuminations using the vanadium photoelectrochemical storage cell at 0.025 mol L^(-1) of vanadium redox species in the acid electrolytes. In addition, the stabilized photocurrent density of the copper content optimized TiO_(2)/Cu_(x)O electrodes is almost tripled from the TiO_(2) only electrode because the charge recombinations can be mitigated with the content optimized TiO_(2)/Cu_(x)O electrodes. Therefore, the optimized TiO_(2)/Cu_(x)O electrode results in the highest charge storing performance in the catholyte chamber, and the roles of vanadium redox species are also clearly demonstrated. 展开更多
关键词 PHOTOCATALYST PHOTOELECTROCHEMICAL Copper oxide charge recombination Redox pairs
下载PDF
Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances 被引量:1
17
作者 Bo Liu Qipeng Chai +3 位作者 Weiwei Zhang Wenjun Wu He Tian Wei-Hong Zhu 《Green Energy & Environment》 SCIE 2016年第1期84-90,共7页
Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess... Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photo voltage. Due to the obvious "barrel effect",both dyes show medium PCE around8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photo voltage, and achieving the synergistic improvement in power conversion efficiency(PCE). Electronic impedance spectra(EIS) indicate that exploiting dye WS-39 with high V_(OC) value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior V_(OC) rather than using dye WS-2 with high J_(SC)as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye(around 8.48-8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells. 展开更多
关键词 Indoline dye Cosensitization Adsorption sequence charge recombination Photovoltaic performances
下载PDF
PHOTOCHROMISM AND LUMINESCENCE OF DOPANT CHROMOPHORES THROUGH TWO-PHOTON IONIZATION IN POLYMER FILMS
18
作者 Masahide Yamamoto Hideo Ohkita Shinzaburo Ito 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2001年第2期129-134,共6页
Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films werestudied and the features of these processes were discussed in relation to photofunctional polymers, An aromatic m... Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films werestudied and the features of these processes were discussed in relation to photofunctional polymers, An aromatic moleculehaving low ionization potential, e.g., N,N,N',N'-tetramethyl-p-phenylene diamine doped in poly(methyl methacrylate)(PMMA) film was easily photoionized by intense laser ligh excitation, giving a colored radical cation (photochromism) anda trapped electron in PMMA matrix. As a reversed process, the radical cation recombined with the trapped electron, showingdiscoloration and emitting luminescence, either isothermal luminescence (ITL), or thermoluminescence (TL). In this report,ITL and TL through the charge recombination process were studied and the luminescence was suggested as a mean of the read-out of photorecording. 展开更多
关键词 Two-photon ionization PHOTOCHROMISM charge recombination Trapped electron Isothermal luminescence THERMOLUMINESCENCE Aromatic amines Poly(methyl methacrylate)
下载PDF
Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics
19
作者 马薇 张帆 孟胜 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期2-12,共11页
Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorp... Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto Ti02, ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron-hole recombination. Advanced exper- imental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and oppor- tunities for further improvement of dye solar cells are presented. 展开更多
关键词 dye-sensitized solar cells interface structure ABSORPTION electron injection multiple-exciton generation charge recombination
下载PDF
Can the efficiencies of simplified perovskite solar cells go higher?
20
作者 Jin-Feng Liao Wenhuai Feng +2 位作者 Jun-Xing Zhong Bing-Xin Lei Wu-Qiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期33-36,共4页
In recent years, metal halide perovskites have emerged as star semiconducting materials in the field of optoelectronic devices owing to their fascinating optoelectronic properties. Of particular interest are perovskit... In recent years, metal halide perovskites have emerged as star semiconducting materials in the field of optoelectronic devices owing to their fascinating optoelectronic properties. Of particular interest are perovskite solar cells (PSCs), which have witnessed skyrocketing power conversion efficiencies (PCEs) within a short period of time, and were recently certified to reach 25.5%, which is already higher than other thin film photovoltaic technologies[1]. Nevertheless, multiple layers are still needed for state-of-theart PSCs to achieve high PCEs over 21%. 展开更多
关键词 Perovskite solar cells charge extraction charge recombination Interfacial modification Energy level alignment
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部