The interaction between neon and x-ray free-electron lasers with different laser parameters is systematically studied by solving a set of coupled rate equations. As an example, the evolution of 1s^12 s^22 p^6 configur...The interaction between neon and x-ray free-electron lasers with different laser parameters is systematically studied by solving a set of coupled rate equations. As an example, the evolution of 1s^12 s^22 p^6 configuration is given under different incident photon numbers, pulse widths, and photon energies. We have also determined all of the charge-state populations as a function of three laser pulse parameters by averaging over time. The result shows that the variations of these charge-state populations demonstrate a pattern when the pulse width is shorter than 10 fs: some of the charge-states decrease rapidly,while the others rise but remain relatively constant for pulse width larger than 10 fs. The variation of the average charge with three parameters has also obtained. The average charge decreases for a pulse width shorter than 10 fs but remains basically unchanged for a pulse width longer than 10 fs.展开更多
Armed with four different steady-state collisional-radiative(CR) models,we investigated the effect of dielectronic recombination(DR) on the charge-state distribution in laser-produced silicon plasma. To assess this ef...Armed with four different steady-state collisional-radiative(CR) models,we investigated the effect of dielectronic recombination(DR) on the charge-state distribution in laser-produced silicon plasma. To assess this effect,we performed a series of temporally resolved spectra of highly charged Si ions in the extreme ultraviolet region.Ab initio calculations of the DR rate coefficients were done for Si^(6+)–Si^(4+) ions. We also analyzed the evolution of the collisional ionization, radiative recombination, three-body recombination, photo-ionization, and DR rate coefficients as a function of electron temperature. The electron temperature and electron density for different delay times were obtained by comparing the normalized experimental and simulated spectra. The ion fraction and average charge state from the four different CR models were also obtained. The results indicate that the DR process has a greater influence in the stage of plasma evolution that cannot be neglected in plasma diagnoses.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11474208)
文摘The interaction between neon and x-ray free-electron lasers with different laser parameters is systematically studied by solving a set of coupled rate equations. As an example, the evolution of 1s^12 s^22 p^6 configuration is given under different incident photon numbers, pulse widths, and photon energies. We have also determined all of the charge-state populations as a function of three laser pulse parameters by averaging over time. The result shows that the variations of these charge-state populations demonstrate a pattern when the pulse width is shorter than 10 fs: some of the charge-states decrease rapidly,while the others rise but remain relatively constant for pulse width larger than 10 fs. The variation of the average charge with three parameters has also obtained. The average charge decreases for a pulse width shorter than 10 fs but remains basically unchanged for a pulse width longer than 10 fs.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)National Natural Science Foundation of China (NSFC) (Grant Nos. 11904293, 11874051)。
文摘Armed with four different steady-state collisional-radiative(CR) models,we investigated the effect of dielectronic recombination(DR) on the charge-state distribution in laser-produced silicon plasma. To assess this effect,we performed a series of temporally resolved spectra of highly charged Si ions in the extreme ultraviolet region.Ab initio calculations of the DR rate coefficients were done for Si^(6+)–Si^(4+) ions. We also analyzed the evolution of the collisional ionization, radiative recombination, three-body recombination, photo-ionization, and DR rate coefficients as a function of electron temperature. The electron temperature and electron density for different delay times were obtained by comparing the normalized experimental and simulated spectra. The ion fraction and average charge state from the four different CR models were also obtained. The results indicate that the DR process has a greater influence in the stage of plasma evolution that cannot be neglected in plasma diagnoses.