Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradi...Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.展开更多
<div style="text-align:justify;"> In this study, a two-dimensional model describing thermal stress on a charge-coupled device (CCD) induced by ms laser pulses was examined. Considering the nonlinearity...<div style="text-align:justify;"> In this study, a two-dimensional model describing thermal stress on a charge-coupled device (CCD) induced by ms laser pulses was examined. Considering the nonlinearity of the CCD’s material parameters and the melting phase transition process of aluminum electrode materials was considered by using equivalent specific heat capacity method, the physical process where a laser pulse irradiating a CCD pixel array was simulated using COMSOL Multiphysics software. The temperature field and thermal stress field were calculated and analyzed. In order to clarify the mechanism producing damage on the CCD detector, Raman spectra from silicon were measured with a micro-Raman spectrometer to determine stress change in the CCD chip. The procedure presented herein illustrates a method for evaluating strain in a CCD after laser irradiation. </div>展开更多
A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polyca...A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.展开更多
An experimental method to study the influence of surface contamination of a thinned, backside illuminated charge-coupled device(CCD) upon its quantum efficiency in soft X-ray region is suggested. A transmission gratin...An experimental method to study the influence of surface contamination of a thinned, backside illuminated charge-coupled device(CCD) upon its quantum efficiency in soft X-ray region is suggested. A transmission grating spectrometer(TGS), in which the transmission grating is coupled to a thinned, backside illuminated charge coupled device, is used to measure the continuum X-ray emission from the end of cylindrical target irradiated by laser. In the measured spectra, only the carbon K absorption edge at wavelength of 4.4 um due to condensation of the vacuum oil oil the CCD surface is clearly seen. The surface contamination is considered as an effective "carbon filter" and the filter absorption to correct the quantum efficiency of the CCD camera is taken into account. The effective thickness of the carbon filter is determined by comparing the jump height of the measured spectra at 4.4um with those of the carbon absorption coefficient curves obtained from various carbon thickness. The accuracy of this method is tested by comparing the X-ray spectrum measured by the TGS with that obtained by a soft X-ray spectrometer.展开更多
A Princeton Instruments PI-LCX 1300 charge-coupled device (CCD) camera used for X-ray spectrum measurements in laser-plasma experiments is calibrated using three radioactive sources and investigated with the Monte C...A Princeton Instruments PI-LCX 1300 charge-coupled device (CCD) camera used for X-ray spectrum measurements in laser-plasma experiments is calibrated using three radioactive sources and investigated with the Monte Carlo code Geant4. The exposure level is controlled to make the CCD work in single photon counting mode. A summation algorithm for obtaining accurate X-ray spectra is developed to reconstruct the X-ray spectra, and the results show that the developed algorithm effectively reduces the low-energy tail caused by split pixel events. The obtained CCD energy response shows good linearity. The detection efficiency curves from both Monte Carlo simulations and the manufacturer agree well with the experimental results. This consistency demonstrates that event losses in charge collection processes are negligible when the developed summation algorithm of sDlit Dixel events is emDloved.展开更多
A peculiar and regular diffraction pattern is recorded while using either a color or a monochrome charge-coupled device (CCD) camera to capture the image of the micro air plasma produced by femtosecond laser pulses. T...A peculiar and regular diffraction pattern is recorded while using either a color or a monochrome charge-coupled device (CCD) camera to capture the image of the micro air plasma produced by femtosecond laser pulses. The diffraction pattern strongly disturbs the observation of the air plasma, so the origin and eliminating method of these diffraction patterns must be investigated. It is found that the Fourier transform of the periodic surface structure of either the mask mosaic of the color CCD or the pixel array of the monochrome CCD is responsible for the formation of the observed pattern. The residual surface reflection from the protection window of a CCD camera plays the essential role in forming the interesting two- dimensional diffraction spots on the same CCD sensor. Both experimental data and theoretical analyses confirm our understanding of this phenomenon. Therefore remov-ing the protection window of the CCD camera can eliminate these diffraction patterns.展开更多
A nonlinearity measurement of the charge-coupled device(CCD) array spectrometer using flux addition and comparison method is described. The light with various colors from the colorful light emitting diode(LED) light s...A nonlinearity measurement of the charge-coupled device(CCD) array spectrometer using flux addition and comparison method is described. The light with various colors from the colorful light emitting diode(LED) light source is applied to measure the nonlinearity of the spectrometer at different wavelengths, respectively. An high-end CCD array spectrometer is tested. For colorful LED light sources, the nonlinearity factors of the CCD array spectrometer(absolute value) are as follows: k<0.8% for white light, k <1.1% for red light, k <2.2% for green light and k<4.7% for blue light. By using those quasi-monochromatic light sources, it is shown that the nonlinearity depends on the wavelength. It is important to be wariness about the spectral nonlinearity and related uncertainty evaluation when the narrow-band light source is tested.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of th...BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The m...BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.展开更多
Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to...Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.展开更多
Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(...Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(Denmark,Finland,Iceland,Norway,and Sweden)and published in 2000 or later.Methods:A systematic search was carried out in PubMed and Web of Science in June 2023 using predefined search terms.Results:Fourteen unique research projects or surveillance studies were identified.Additionally,2 surveillance studies published by national agencies were included,resulting in a total of 16 studies for inclusion.National surveillance systems exist in Finland and Norway,with regular survey waves in school-aged children/adolescents and adults.In Denmark,recent nationally representative data have been collected in school children only.So far,Sweden has no regular national surveillance system using device-based data collection.No studies were found from Iceland.The first study was conducted in 2001 and the most recent in 2022,with most data collected from 2016 to date.Five studies included children/adole scents 6-18 years,no study included preschoolers.In total 11 studies included adults,of which 8 also covered older adults.No study focused specifically on older adults.The analytical sample size ranged from 205 to 27,890.Detailed methodology is presented,such as information on sampling strategy,device type and placement,wear protocols,and physical activity classification schemes.Levels of physical activity and sedentary time in children/adolescents,adults,and older adults across the Nordic countries are presented.Conclusion:A growing implementation of device-based population surveillance of physical activity and sedentary behavior in the Nordic countries has been identified.The variety of devices,placement,and data procedures both within and between the Nordic countries highlights the challenges when it comes to comparing study outcomes as well as the need for more standardized data collection.展开更多
In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has bee...In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has been widely utilized as a convenient and effective approach for substrate property modulation and device fabrication.Thus,a thorough summary of β-Ga_(2)O_(3) substrates and devices behaviors after high-temperature treatment should be significant.In this review,we present the recent advances in modulating properties of β-Ga_(2)O_(3) substrates by thermal treatment,which include three major applications:(ⅰ)tuning surface electrical properties,(ⅱ)modifying surface morphology,and(ⅲ)oxidating films.Meanwhile,regulating electrical contacts and handling with radiation damage and ion implantation have also been discussed in device fabrication.In each category,universal annealing conditions were speculated to figure out the corresponding problems,and some unsolved questions were proposed clearly.This review could construct a systematic thermal treatment strategy for various purposes and applications of β-Ga_(2)O_(3).展开更多
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLP...The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.展开更多
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
基金Project supported by the Foundation of State Key Laboratory of China(Grant Nos.SKLIPR1903Z,1803)the National Natural Science Foundation of China(Grant Nos.U2167208 and 11875223).
文摘Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.
文摘<div style="text-align:justify;"> In this study, a two-dimensional model describing thermal stress on a charge-coupled device (CCD) induced by ms laser pulses was examined. Considering the nonlinearity of the CCD’s material parameters and the melting phase transition process of aluminum electrode materials was considered by using equivalent specific heat capacity method, the physical process where a laser pulse irradiating a CCD pixel array was simulated using COMSOL Multiphysics software. The temperature field and thermal stress field were calculated and analyzed. In order to clarify the mechanism producing damage on the CCD detector, Raman spectra from silicon were measured with a micro-Raman spectrometer to determine stress change in the CCD chip. The procedure presented herein illustrates a method for evaluating strain in a CCD after laser irradiation. </div>
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019,12105020,and 12075031)the Bud Project of Beijing Academy of Science and Technology(Grant No.BGS202106)the National Key Research and Development Program of China(Grant No.2021YFF0701202)
文摘A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.
基金the National High-Technolog Project (No. 863-416-3)
文摘An experimental method to study the influence of surface contamination of a thinned, backside illuminated charge-coupled device(CCD) upon its quantum efficiency in soft X-ray region is suggested. A transmission grating spectrometer(TGS), in which the transmission grating is coupled to a thinned, backside illuminated charge coupled device, is used to measure the continuum X-ray emission from the end of cylindrical target irradiated by laser. In the measured spectra, only the carbon K absorption edge at wavelength of 4.4 um due to condensation of the vacuum oil oil the CCD surface is clearly seen. The surface contamination is considered as an effective "carbon filter" and the filter absorption to correct the quantum efficiency of the CCD camera is taken into account. The effective thickness of the carbon filter is determined by comparing the jump height of the measured spectra at 4.4um with those of the carbon absorption coefficient curves obtained from various carbon thickness. The accuracy of this method is tested by comparing the X-ray spectrum measured by the TGS with that obtained by a soft X-ray spectrometer.
基金supported by the National Natural Science Foundation of China(Nos.10975121,10905051,10902051,and 11174259)the Foundation of CAEP(Nos.2009A0102003 and 2011B0102021)the Foundation of Science and Technology on Plasma Physics Laboratory(No.9140C6802041004)
文摘A Princeton Instruments PI-LCX 1300 charge-coupled device (CCD) camera used for X-ray spectrum measurements in laser-plasma experiments is calibrated using three radioactive sources and investigated with the Monte Carlo code Geant4. The exposure level is controlled to make the CCD work in single photon counting mode. A summation algorithm for obtaining accurate X-ray spectra is developed to reconstruct the X-ray spectra, and the results show that the developed algorithm effectively reduces the low-energy tail caused by split pixel events. The obtained CCD energy response shows good linearity. The detection efficiency curves from both Monte Carlo simulations and the manufacturer agree well with the experimental results. This consistency demonstrates that event losses in charge collection processes are negligible when the developed summation algorithm of sDlit Dixel events is emDloved.
基金the National Natural Science Foundation of China (Grant Nos. 11274185 and 61137001)the Natural Science Foundation of Tianjin City (No. 16JCQNJC01900).
文摘A peculiar and regular diffraction pattern is recorded while using either a color or a monochrome charge-coupled device (CCD) camera to capture the image of the micro air plasma produced by femtosecond laser pulses. The diffraction pattern strongly disturbs the observation of the air plasma, so the origin and eliminating method of these diffraction patterns must be investigated. It is found that the Fourier transform of the periodic surface structure of either the mask mosaic of the color CCD or the pixel array of the monochrome CCD is responsible for the formation of the observed pattern. The residual surface reflection from the protection window of a CCD camera plays the essential role in forming the interesting two- dimensional diffraction spots on the same CCD sensor. Both experimental data and theoretical analyses confirm our understanding of this phenomenon. Therefore remov-ing the protection window of the CCD camera can eliminate these diffraction patterns.
基金supported by the National Natural Science Foundation of China(No.61505191)
文摘A nonlinearity measurement of the charge-coupled device(CCD) array spectrometer using flux addition and comparison method is described. The light with various colors from the colorful light emitting diode(LED) light source is applied to measure the nonlinearity of the spectrometer at different wavelengths, respectively. An high-end CCD array spectrometer is tested. For colorful LED light sources, the nonlinearity factors of the CCD array spectrometer(absolute value) are as follows: k<0.8% for white light, k <1.1% for red light, k <2.2% for green light and k<4.7% for blue light. By using those quasi-monochromatic light sources, it is shown that the nonlinearity depends on the wavelength. It is important to be wariness about the spectral nonlinearity and related uncertainty evaluation when the narrow-band light source is tested.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
文摘BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
文摘BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.
基金financial support from the National Natural Science Foundation of China(22105106)the Natural Science Foundation of Jiangsu Province of China(BK20210603)+1 种基金the Nanjing Science and Technology Innovation Project for overseas Students(NJKCZYZZ2022–05)the Start-up Funding from NUPTSF(NY221003)。
文摘Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.
文摘Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(Denmark,Finland,Iceland,Norway,and Sweden)and published in 2000 or later.Methods:A systematic search was carried out in PubMed and Web of Science in June 2023 using predefined search terms.Results:Fourteen unique research projects or surveillance studies were identified.Additionally,2 surveillance studies published by national agencies were included,resulting in a total of 16 studies for inclusion.National surveillance systems exist in Finland and Norway,with regular survey waves in school-aged children/adolescents and adults.In Denmark,recent nationally representative data have been collected in school children only.So far,Sweden has no regular national surveillance system using device-based data collection.No studies were found from Iceland.The first study was conducted in 2001 and the most recent in 2022,with most data collected from 2016 to date.Five studies included children/adole scents 6-18 years,no study included preschoolers.In total 11 studies included adults,of which 8 also covered older adults.No study focused specifically on older adults.The analytical sample size ranged from 205 to 27,890.Detailed methodology is presented,such as information on sampling strategy,device type and placement,wear protocols,and physical activity classification schemes.Levels of physical activity and sedentary time in children/adolescents,adults,and older adults across the Nordic countries are presented.Conclusion:A growing implementation of device-based population surveillance of physical activity and sedentary behavior in the Nordic countries has been identified.The variety of devices,placement,and data procedures both within and between the Nordic countries highlights the challenges when it comes to comparing study outcomes as well as the need for more standardized data collection.
基金the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang,China(No.2023C01193)the National Natural Science Foundation of China(Nos.52202150 and 22205203)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61721005)the Fundamental Research Funds for the Central Universities(Nos.226-2022-00200 and 226-2022-00250)the National Program for Support of Topnotch Young Professionals。
文摘In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has been widely utilized as a convenient and effective approach for substrate property modulation and device fabrication.Thus,a thorough summary of β-Ga_(2)O_(3) substrates and devices behaviors after high-temperature treatment should be significant.In this review,we present the recent advances in modulating properties of β-Ga_(2)O_(3) substrates by thermal treatment,which include three major applications:(ⅰ)tuning surface electrical properties,(ⅱ)modifying surface morphology,and(ⅲ)oxidating films.Meanwhile,regulating electrical contacts and handling with radiation damage and ion implantation have also been discussed in device fabrication.In each category,universal annealing conditions were speculated to figure out the corresponding problems,and some unsolved questions were proposed clearly.This review could construct a systematic thermal treatment strategy for various purposes and applications of β-Ga_(2)O_(3).
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0303105)the Fundamental Research Funds for the Central Universities(Grant No.2022FRFK060021)the National MCF Energy Research and Development Program(Grant No.2019YFE03080300).
文摘The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.