AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routi...AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.展开更多
Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine im...Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine impurities via a radicaleinitiated oxidation pathway.These impurities are typically polar and nonchromophoric,and are thus often overlooked using traditional reversed phase chromatography and UV detection.In this work,stress testing of metoprolol confirmed the generation of 3-isopropylamino-1,2-propanediol as a degradation product,which is a specified impurity of metoprolol in the European Pharmacopoeia(impurity N).To ensure the safety and quality of metoprolol drug products,hydrophilic interaction chromatography(HILIC)methods using Halo Penta HILIC column(150mm×4.6 mm,5 μm)coupled with charged aerosol detection(CAD)were developed and optimized for the separation and quantitation of metoprolol impurity N in metoprolol drug products including metoprolol tartrate injection,metoprolol tartrate tablets,and metoprolol succinate extended-release tablets.These HILIC-CAD methods were validated per USP validation guidelines with respect to specificity,linearity,accuracy,and precision,and have been successfully applied to determine impurity N in metoprolol drug products.展开更多
基金supported by the National Natural Science Foundation of China(81303246)the Jiangsu Provincial Natural Science Foundation of China(BK2011815)+1 种基金the ‘Qing Lan’ Project from Jiangsu Provincial Framework Teacher Support Schemethe Projects of priority-discipline for colleges and universities of Jiangsu Province
文摘AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.
文摘Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine impurities via a radicaleinitiated oxidation pathway.These impurities are typically polar and nonchromophoric,and are thus often overlooked using traditional reversed phase chromatography and UV detection.In this work,stress testing of metoprolol confirmed the generation of 3-isopropylamino-1,2-propanediol as a degradation product,which is a specified impurity of metoprolol in the European Pharmacopoeia(impurity N).To ensure the safety and quality of metoprolol drug products,hydrophilic interaction chromatography(HILIC)methods using Halo Penta HILIC column(150mm×4.6 mm,5 μm)coupled with charged aerosol detection(CAD)were developed and optimized for the separation and quantitation of metoprolol impurity N in metoprolol drug products including metoprolol tartrate injection,metoprolol tartrate tablets,and metoprolol succinate extended-release tablets.These HILIC-CAD methods were validated per USP validation guidelines with respect to specificity,linearity,accuracy,and precision,and have been successfully applied to determine impurity N in metoprolol drug products.