期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of the internal charging data in medium earth orbit with numerical simulation and ground experiment
1
作者 SONG SiYu CHEN HongFei +5 位作者 YU XiangQian ZOU Hong ZONG QiuGang CHEN Ao SHI WeiHong YE YuGuang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期977-986,共10页
The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigat... The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigation satellites in a circular medium earth orbit(MEO)with 22000 km average height and 55°inclinations.Numerical simulation based on the Geant4-RIC method was used to evaluate the data of DDCEM.The data during May to November 2019 on one of the three satellites show that the charging currents of DDCEM were negatively enhanced when the satellite moved into the outer radiation belt.The currents reached the negative maximum during a significant electron enhancement in September 2019.Positive currents were also detected besides negative currents that were caused by the deposition of electrons in the sensor.The causation of positive currents in the space environment may be that the low-energy electrons cannot penetrate the satellite skin and make it charging to negative potential,the reference ground of DDCEM that is connected to the satellite skin drops below zero by the low-energy electrons so that the output currents turn to positive.Ground experiment was used to simulate the causation of positive currents and the result verified our theory. 展开更多
关键词 deep dielectric charging effect monitor internal charging effect charging currents and potentials medium earth orbit space environment
原文传递
Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China 被引量:7
2
作者 Zhe Ni Jianguo Liu +3 位作者 Mingying Song Xiaowei Wang Lianhai Ren Xin Kong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期34-44,共11页
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions... Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air. 展开更多
关键词 Food waste treatment plant In-situ monitoring VOC emissions Odorous charge Photochemical reactivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部