We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their ...During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
基金support from the National Key R&D Program of China(No.2021YFA1501101)the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme(No.N_PolyU502/21)+3 种基金the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University(Project Code:1-ZE2V)the Shenzhen Fundamental Research Scheme-General Program(No.JCYJ20220531090807017)the Natural Science Foundation of Guangdong Province(No.2023A1515012219)the Departmental General Research Fund(Project Code:ZVUL)from The Hong Kong Polytechnic University.
文摘During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.