期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Improved data-driven performance of Charpy impact toughness via literature-assisted production data in pipeline steel
1
作者 SHANG ChunLei WANG ChuanJun +9 位作者 WU HongHui LIU WenYue CHEN YiMian PAN GuangFei WANG ShuiZe WU GuiLin GAO JunHeng ZHAO HaiTao ZHANG ChaoLei MAO XinPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第7期2069-2079,共11页
Pipeline transportation is one of the most economical ways to transport crude oil and natural gas over long distances.High toughness is one of the important qualities of pipeline steel to ensure safe transportation,wh... Pipeline transportation is one of the most economical ways to transport crude oil and natural gas over long distances.High toughness is one of the important qualities of pipeline steel to ensure safe transportation,wherein a key factor characterizing toughness is Charpy impact toughness(CIT).In this work,according to the production line data provided by a steel mill and the experimental data collected in literature,two machine learning model construction strategies were proposed.One was based solely on the production line dataset,and the other was based on the production line dataset together with the literature dataset.In these two strategies,the random forest model displayed the best prediction results,the accuracy of strategy I was 0.58,and the accuracy of strategy II was 0.90,wherein literature data effectively improved the CIT prediction accuracy.Finally,an optimized CIT model based on machine learning algorithms was established.The proposed strategy of literature data-assisted production line data provides a new perspective for optimizing and predicting the performance of traditional structural materials. 展开更多
关键词 data-driven design pipeline steel charpy impact toughness machine learning
原文传递
Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning
2
作者 Yimian Chen Shuize Wang +6 位作者 Jie Xiong Guilin Wu Junheng Gao Yuan Wu Guoqiang Ma Hong-Hui Wu Xinping Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期213-222,共10页
High toughness is highly desired for low-alloy steel in engineering structure applications,wherein Charpy impact toughness(CIT)is a critical factor determining the toughness performance.In the current work,CIT data of... High toughness is highly desired for low-alloy steel in engineering structure applications,wherein Charpy impact toughness(CIT)is a critical factor determining the toughness performance.In the current work,CIT data of low-alloy steel were collected,and then CIT prediction models based on machine learning(ML)algorithms were established.Three feature construction strategies were proposed.One is solely based on alloy composition,another is based on alloy composition and heat treatment parameters,and the last one is based on alloy composition,heat treatment parameters,and physical features.A series of ML methods were used to effectively select models and material descriptors from a large number of al-ternatives.Compared with the strategy solely based on the alloy composition,the strategy based on alloy composition,heat treatment parameters together with physical features perform much better.Finally,a genetic programming(GP)based symbolic regression(SR)approach was developed to establish a physical meaningful formula between the selected features and targeted CIT data. 展开更多
关键词 Machine learning Symbolic regression Low-alloy steel charpy impact toughness
原文传递
Effects of Al addition and cryogenic cyclic treatment on impact toughness of phase-transformable Ti-based bulk metallic glass composites 被引量:1
3
作者 Tingyi Yan Long Zhang +6 位作者 R.Lakshmi Narayan Jingyu Pang Yi Wu Huameng Fu Hong Li Upadrasta Ramamurty Haifeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期210-220,共11页
Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The eff... Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The effects of Al addition and cryogenic cyclic treatment(CCT)on the Charpy impact toughness,a K,at 298 and 77 K of a series of phase-transformable BMGCs are investigated in this work.It is found that deformation-induced martensitic transformation(DIMT)of theβ-Ti dendrites is the dominant toughening mechanism in the phase-transformable BMGCs at 298 K,but at 77 K,the toughness of BMGCs is primarily determined by the intrinsic toughness of the glass matrix.The addition of Al can moderately tune theβ-Ti phase stability,which then affects the amount of DIMT and impact toughness of the BMGCs at 298 K.However,at 77 K,Al addition causes a monotonic decrease in the toughness of the BMGCs due to the embrittlement of the glass matrix.It is found that CCT can effectively rejuvenate the phase-transformable BMGCs,which results in an enhanced impact toughness at 298 K.However,the toughness at 77 K monotonously decreases with increasing the number of CCT cycles,suggesting that the rejuvenation of the glass matrix affects the toughness at both 298 and 77 K of BMGCs,but in dramatically different ways.These findings reveal the influence of microstructures and CCT on the impact toughness of BMGCs and provide insights that could be useful for designing tougher BMGs and BMGCs. 展开更多
关键词 Bulk metallic glass composites charpy impact toughness Deformation-induced martensitic transformation METASTABILITY Thermal cycling rejuvenation
原文传递
Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD 被引量:6
4
作者 Gang Liu Shi-Lei Li +2 位作者 Hai-Long Zhang Xi-Tao Wang Yan-Li Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第8期798-806,共9页
The effect of thermal aging on phase transformation and impact toughness of an as-cast duplex stainless steel was investigated at room temperature. After long-term thermal aging, the impact toughness decreases signifi... The effect of thermal aging on phase transformation and impact toughness of an as-cast duplex stainless steel was investigated at room temperature. After long-term thermal aging, the impact toughness decreases significantly and the cracks initiate and propagate more easily. The plastic deformation ability of the ferrite phase decreases after thermal aging,which leads to the degradation of impact toughness. High stress concentration occurs on the grain boundaries of the austenite phase in the aged materials. Meanwhile, high-stress concentration areas are also observed in the austenite phase near the grain boundaries. After long-term thermal aging, pinned dislocations in ferrite and along phase boundaries lead to the high stress concentration. Micro-cracks preferentially initiate in the ferrite phase and propagate via separation of phase boundaries. The blocking influences of spinodal decomposition precipitates and G-phase precipitates are stronger than the effect of grain boundaries and phase boundaries on the dislocation movement. 展开更多
关键词 Duplex stainless steel Thermal aging charpy impact toughness EBSD
原文传递
Effect of Mn content on microstructure, tensile and impact properties of SA508Gr.4N steel for reactor pressure vessel 被引量:1
5
作者 Xi-kou He Zhi-qiang Yang +2 位作者 Zhen Wang Shi-bin Qiao Zheng-dong Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第4期461-470,共10页
The effect of manganese(Mn)on the microstructure,tensile and impact properties of SA508Gr.4N steel has been experimentally investigated.The influence of Mn content on the substructure of SA508Gr.4N steel was investiga... The effect of manganese(Mn)on the microstructure,tensile and impact properties of SA508Gr.4N steel has been experimentally investigated.The influence of Mn content on the substructure of SA508Gr.4N steel was investigated using the scanning electron microscope,electron back-scattered diffractometer and transmission electron microscope.It was found that the increased Mn content had a beneficial effect on both strength and toughness.Examination of microstructure revealed smaller size of block and larger number of high-angle grain boundaries with higher Mn content.The change of the ultimate tensile strength and toughness with increasing Mn content was attributed to the increased hardenability,the number of high-angle grain boundaries and the crack propagation path by the block refining. 展开更多
关键词 Mn element SA508Gr.4N steel MICROSTRUCTURE charpy impact toughness SUBSTRUCTURE
原文传递
Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels 被引量:3
6
作者 Xiaoru Liu Hao Feng +6 位作者 Jing Wang Xuefei Chen Ping Jiang Fuping Yuan Huabing Li En Ma Xiaolei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期256-269,共14页
We systematically compared the mechanical properties of CrCoNi,a recently emerged prototypical medium-entropy alloy(MEA)with face-centered-cubic(FCC)structure,with hallmark FCC alloys,in particular,the well-known aust... We systematically compared the mechanical properties of CrCoNi,a recently emerged prototypical medium-entropy alloy(MEA)with face-centered-cubic(FCC)structure,with hallmark FCC alloys,in particular,the well-known austenitic 316 L and 316 LN stainless steels,which are also concentrated singlephase FCC solid solutions and arguably next-of-kin to the MEAs.The tensile and impact properties,across the temperatures range from 373 K to 4.2 K,as well as fracture toughness at 298 K and 77 K,were documented.From room temperature to cryogenic temperature,all three alloys exhibited similarly good mechanical properties;CrCoNi increased its tensile uniform elongation and fracture toughness,which was different from the decreasing trend of the 316 L and 316 LN.On the other hand,the stainless steels showed higher fracture toughness than CrCoNi at all temperatures.To explain the differences in macroscopic mechanical properties of the three alloys,microstructural hardening mechanisms were surveyed.CrCoNi MEA relied on abundant mechanical twinning on the nanoscale,while martensitic transformation was dominant in 316 L at low temperatures.The deformation mechanisms in the plastic zone ahead of the propagating crack in impact and fracture toughness tests were also analyzed and compared for the three alloys. 展开更多
关键词 Medium-entropy alloy Austenite stainless steel Strain hardening DUCTILITY Fracture toughness charpy impact toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部