This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential pr...The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.展开更多
Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds t...Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
Chebyshev polynomial is widely used in many fields, and used usually as function approximation in numerical calculation. In this paper, Chebyshev polynomial expression of the propeller properties across four quadrants...Chebyshev polynomial is widely used in many fields, and used usually as function approximation in numerical calculation. In this paper, Chebyshev polynomial expression of the propeller properties across four quadrants is given at first, then the expression of Chebyshev polynomial is transformed to ordinary polynomial for the need of simulation of propeller dynamics. On the basis of it, the dynamical models of propeller across four quadrants are given. The simulation results show the efficiency of mathematical model.展开更多
A dedicated key server cannot be instituted to manage keys for MANETs since they are dynamic and unstable. The Lagrange's polynomial and curve fitting are being used to implement hierarchical key management for Mo...A dedicated key server cannot be instituted to manage keys for MANETs since they are dynamic and unstable. The Lagrange's polynomial and curve fitting are being used to implement hierarchical key management for Mobile Ad hoc Networks(MANETs). The polynomial interpolation by Lagrange and curve fitting requires high computational efforts for higher order polynomials and moreover they are susceptible to Runge's phenomenon. The Chebyshev polynomials are secure, accurate, and stable and there is no limit to the degree of the polynomials. The distributed key management is a big challenge in these time varying networks. In this work, the Chebyshev polynomials are used to perform key management and tested in various conditions. The secret key shares generation, symmetric key construction and key distribution by using Chebyshev polynomials are the main elements of this projected work. The significance property of Chebyshev polynomials is its recursive nature. The mobile nodes usually have less computational power and less memory, the key management by using Chebyshev polynomials reduces the burden of mobile nodes to implement the overall system.展开更多
A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was use...A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.展开更多
This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
Motion accuracy of space manipulators has direct effects on the ability of the systems to perform specified tasks. However, some design variables are inherently interval parameters due to uncertainties in geometric st...Motion accuracy of space manipulators has direct effects on the ability of the systems to perform specified tasks. However, some design variables are inherently interval parameters due to uncertainties in geometric structures, material properties, and so on. This paper presents Chebyshev inclusion function(CIF) for approximating the dynamic responses function of parametrically excited systems. Motion accuracy reliability(MAR) of space manipulators was evaluated based on mechanism reliability analysis methods and interval uncertainty model. To illustrate the accuracy of the proposed method, a two-link manipulator with interval parameters was demonstrated. The results showed that the proposed method required much fewer samples to obtain more accurate reliability compared with the traditional Monte Carlo simulation(MCS). Finally, the sensitivity analysis was performed to facilitate the optimization design by using global sensitivity analysis.展开更多
Chebyshev polynomials are used as a reservoir for generating intricate classes of symmetrical and chaotic pattems, and have been used in a vast anaount of applications. Using extended Chebyshev polynomial over finite ...Chebyshev polynomials are used as a reservoir for generating intricate classes of symmetrical and chaotic pattems, and have been used in a vast anaount of applications. Using extended Chebyshev polynomial over finite field Ze, Algehawi and Samsudin presented recently an Identity Based Encryption (IBE) scheme. In this paper, we showed their proposal is not as secure as they chimed. More specifically, we presented a concrete attack on the scheme of Algehawi and Samsudin, which indicated the scheme cannot be consolidated as a real altemative of IBE schemes since one can exploit the semi group property (bilinearity) of extended Chebyshev polynomials over Zp to implement the attack without any difficulty.展开更多
In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of c...In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped nearEarth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.展开更多
We raise and partly answer the question: whether there exists a Markov system with respect to which the zeros of the Chebyshev polynomials are dense, but the maximum length of a zero free interval of the nth Chebyshev...We raise and partly answer the question: whether there exists a Markov system with respect to which the zeros of the Chebyshev polynomials are dense, but the maximum length of a zero free interval of the nth Chebyshev polynomial does not tends to zero. We also draw the conclu- tion that a Markov system, under an additional assumption, is dense if and only if the maxi- mum length of a zero free interval of the nth associated Chebyshev polynomial tends to zero.展开更多
This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for th...This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials.These two classes generalize the two celebrated non-symmetric classes of polynomials,namely,Chebyshev polynomials of third-and fourth-kinds.The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials.The derived formulas serve in converting the even-order linear differential equations with their boundary conditions into linear systems that can be efficiently solved.Furthermore,and based on the first-order derivatives formula of certain Jacobi polynomials,the operational matrix of derivatives is extracted and employed to present another algorithm to treat both linear and nonlinear two-point boundary value problems based on the application of the collocation method.Convergence analysis of the proposed expansions is investigated.Some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.展开更多
In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and fo...In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.展开更多
On the basis of introducing the fundamental principles of the least square methods, the Chebyshev polynomial data fitting method is given, by using this method, the grain yield of Jilin Province from 1952 to 2008 is a...On the basis of introducing the fundamental principles of the least square methods, the Chebyshev polynomial data fitting method is given, by using this method, the grain yield of Jilin Province from 1952 to 2008 is analyzed. The results show that when analyzing the research data of agricultural economy, the least square method of the Chebyshev polynomials is a good choice; by establishing the prediction model of the least square method of Chebyshev polynomials, we get the results that the grain yield in Jilin Province from 2009 to 2015 is 29.004 millon, 29.836 million, 30.681 million, 31.540 million, 32.412 million, 33.298 million, 34.197 million ton ; the annual average growth rate of grain yield from 2009 to 2015 is 2.78%, lower than the annual growth rate of 7.12% from 2000 to 2008.展开更多
This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still ke...This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still keeps the converge uniformly properlies for any continuous function on . Besides,the paper estimates the convergance rate.展开更多
The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant...The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant coefficients and exhibit vibration. The use of the Chebyshev polynomials allows calculation of the analytic solutions for arbitrary n in terms of the orthogonal Chebyshev polynomials to provide a more stable solution form and natural sensitivity analysis in terms of one parameter and the initial conditions in 6n + 7 arithmetic operations and one square root.展开更多
In this paper, we build the integral collocation method by using the second shifted Chebyshev polynomials. The numerical method solving the model non-linear such as Riccati differential equation, Logistic differential...In this paper, we build the integral collocation method by using the second shifted Chebyshev polynomials. The numerical method solving the model non-linear such as Riccati differential equation, Logistic differential equation and Multi-order ODEs. The properties of shifted Chebyshev polynomials of the second kind are presented. The finite difference method is used to solve this system of equations. Several numerical examples are provided to confirm the reliability and effectiveness of the proposed method.展开更多
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091 and 10332030).
文摘The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
文摘Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
文摘Chebyshev polynomial is widely used in many fields, and used usually as function approximation in numerical calculation. In this paper, Chebyshev polynomial expression of the propeller properties across four quadrants is given at first, then the expression of Chebyshev polynomial is transformed to ordinary polynomial for the need of simulation of propeller dynamics. On the basis of it, the dynamical models of propeller across four quadrants are given. The simulation results show the efficiency of mathematical model.
文摘A dedicated key server cannot be instituted to manage keys for MANETs since they are dynamic and unstable. The Lagrange's polynomial and curve fitting are being used to implement hierarchical key management for Mobile Ad hoc Networks(MANETs). The polynomial interpolation by Lagrange and curve fitting requires high computational efforts for higher order polynomials and moreover they are susceptible to Runge's phenomenon. The Chebyshev polynomials are secure, accurate, and stable and there is no limit to the degree of the polynomials. The distributed key management is a big challenge in these time varying networks. In this work, the Chebyshev polynomials are used to perform key management and tested in various conditions. The secret key shares generation, symmetric key construction and key distribution by using Chebyshev polynomials are the main elements of this projected work. The significance property of Chebyshev polynomials is its recursive nature. The mobile nodes usually have less computational power and less memory, the key management by using Chebyshev polynomials reduces the burden of mobile nodes to implement the overall system.
基金Projects(50490274 , 10472134 , 50404010) supported by the National Natural Science Foundation of China project(2002CB412703) supported by the Key Fundamental Research and Development Programof China
文摘A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.
文摘This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51675026)
文摘Motion accuracy of space manipulators has direct effects on the ability of the systems to perform specified tasks. However, some design variables are inherently interval parameters due to uncertainties in geometric structures, material properties, and so on. This paper presents Chebyshev inclusion function(CIF) for approximating the dynamic responses function of parametrically excited systems. Motion accuracy reliability(MAR) of space manipulators was evaluated based on mechanism reliability analysis methods and interval uncertainty model. To illustrate the accuracy of the proposed method, a two-link manipulator with interval parameters was demonstrated. The results showed that the proposed method required much fewer samples to obtain more accurate reliability compared with the traditional Monte Carlo simulation(MCS). Finally, the sensitivity analysis was performed to facilitate the optimization design by using global sensitivity analysis.
基金Acknowledgements The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was partically supported by National Natural Science Foundation of China under Crants No. 61172085, No. 61103221, No. 61133014, No. 11061130539 and No. 61021004.
文摘Chebyshev polynomials are used as a reservoir for generating intricate classes of symmetrical and chaotic pattems, and have been used in a vast anaount of applications. Using extended Chebyshev polynomial over finite field Ze, Algehawi and Samsudin presented recently an Identity Based Encryption (IBE) scheme. In this paper, we showed their proposal is not as secure as they chimed. More specifically, we presented a concrete attack on the scheme of Algehawi and Samsudin, which indicated the scheme cannot be consolidated as a real altemative of IBE schemes since one can exploit the semi group property (bilinearity) of extended Chebyshev polynomials over Zp to implement the attack without any difficulty.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11473073,11503091,11661161013 and 11633009)Foundation of Minor Planets of the Purple Mountain Observatory
文摘In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped nearEarth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.
文摘We raise and partly answer the question: whether there exists a Markov system with respect to which the zeros of the Chebyshev polynomials are dense, but the maximum length of a zero free interval of the nth Chebyshev polynomial does not tends to zero. We also draw the conclu- tion that a Markov system, under an additional assumption, is dense if and only if the maxi- mum length of a zero free interval of the nth associated Chebyshev polynomial tends to zero.
文摘This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials.These two classes generalize the two celebrated non-symmetric classes of polynomials,namely,Chebyshev polynomials of third-and fourth-kinds.The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials.The derived formulas serve in converting the even-order linear differential equations with their boundary conditions into linear systems that can be efficiently solved.Furthermore,and based on the first-order derivatives formula of certain Jacobi polynomials,the operational matrix of derivatives is extracted and employed to present another algorithm to treat both linear and nonlinear two-point boundary value problems based on the application of the collocation method.Convergence analysis of the proposed expansions is investigated.Some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.
文摘In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.
基金Supported by the Projects of Jilin Provincial Science & Technology Department (20080644)
文摘On the basis of introducing the fundamental principles of the least square methods, the Chebyshev polynomial data fitting method is given, by using this method, the grain yield of Jilin Province from 1952 to 2008 is analyzed. The results show that when analyzing the research data of agricultural economy, the least square method of the Chebyshev polynomials is a good choice; by establishing the prediction model of the least square method of Chebyshev polynomials, we get the results that the grain yield in Jilin Province from 2009 to 2015 is 29.004 millon, 29.836 million, 30.681 million, 31.540 million, 32.412 million, 33.298 million, 34.197 million ton ; the annual average growth rate of grain yield from 2009 to 2015 is 2.78%, lower than the annual growth rate of 7.12% from 2000 to 2008.
文摘This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still keeps the converge uniformly properlies for any continuous function on . Besides,the paper estimates the convergance rate.
文摘The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant coefficients and exhibit vibration. The use of the Chebyshev polynomials allows calculation of the analytic solutions for arbitrary n in terms of the orthogonal Chebyshev polynomials to provide a more stable solution form and natural sensitivity analysis in terms of one parameter and the initial conditions in 6n + 7 arithmetic operations and one square root.
文摘In this paper, we build the integral collocation method by using the second shifted Chebyshev polynomials. The numerical method solving the model non-linear such as Riccati differential equation, Logistic differential equation and Multi-order ODEs. The properties of shifted Chebyshev polynomials of the second kind are presented. The finite difference method is used to solve this system of equations. Several numerical examples are provided to confirm the reliability and effectiveness of the proposed method.