Optimization of factors influencing the experiments on reactions involving 8 different chelating agents and soluble Fe(III)/Fe(II) salts was carried out to yield chelated iron complexes. A combination of optimized inf...Optimization of factors influencing the experiments on reactions involving 8 different chelating agents and soluble Fe(III)/Fe(II) salts was carried out to yield chelated iron complexes. A combination of optimized influencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83—13.56 g/L at a redox potential of 0.185—0.3. The desulfurization performance of Fe(III)/Fe(II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2 S and N2 in a cross-flow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efficiency of over 99% along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.展开更多
By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction met...By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.展开更多
A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as ...A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as the rotation speed of electrode,voltage,and inlet air and liquid flow rates,on the regeneration rate was investigated.Compared with the traditional tank-type reactor,the regeneration rate with the new electrochemical reactor was increased significantly.Under the optimum conditions,the regeneration rate was increased from 45.3%to 84.8%.Experimental results of continuous operation indicated that the new electrochemical regeneration method had some merits including higher regeneration efficiency,smaller equipment size and good stability in operation.展开更多
[Objective]The paper was to study effects of small peptide chelated trace elements(copper,iron,zinc and manganese)on growth performance,chicken quality and antioxidant capacity of rapid yellow feather broilers.[Method...[Objective]The paper was to study effects of small peptide chelated trace elements(copper,iron,zinc and manganese)on growth performance,chicken quality and antioxidant capacity of rapid yellow feather broilers.[Method]Three hundred one-day-old yellow feather broilers with similar body weight were selected and randomly divided into three treatments:inorganic trace element group(basal diet+inorganic trace elements),organic trace element group(basal diet+small peptide chelated trace elements)and compound group(basal diet+50%inorganic trace elements+50%small peptide chelated trace elements).There were 10 replicates per treatment and 10 chickens per replicate.The trial lasted for 63 d.[Result]①Compared to inorganic trace element group,average daily gain(ADG)of yellow feather broilers in organic trace element group was significantly increased over the whole period(P<0.05).②There was no significant difference in slaughter performance and immune organ indices among the three test groups(P>0.05).③There was no significant difference in breast muscle pH,chicken color,drip loss,and shear force among the three groups(P>0.05),but cooking loss of chicken breast in inorganic trace element group was 27.46%and 22.53%higher than those in organic trace element group and compound group,respectively(P<0.05).④MDA content in serum in organic trace element group was 15.61%lower than that in inorganic trace element group(P<0.05).[Conclusion]Complete substitution of inorganic copper,iron,zinc and manganese by small peptide chelated copper,iron,zinc,and manganese significantly increases ADG of broilers,improves quality of chicken breast,and enhances antioxidant capacity.展开更多
The aim of this research was to study the effect of spraying nutritional solution "PRO.SOL" and chelated iron on vegetative and floral growth characteristics on Gazania plant. Randomized Complete Block Design (R.C....The aim of this research was to study the effect of spraying nutritional solution "PRO.SOL" and chelated iron on vegetative and floral growth characteristics on Gazania plant. Randomized Complete Block Design (R.C.B.D) was adopted utilizing two applications in three replicates. Three concentration levels of nutritional solution PRO.SOL (10.00, 5.00 and 0.00 mg/L) and four concentration levels of chelated iron (90.00, 60.00, 30.00 and 0.00 mg/L) were applied in this experiment. The interaction between the two factors was also measured. The mean values were compared using L.S.D test at probability level 0.05. Spraying PRO.SOL at concentration 10.00 mg/L or chelated iron concentration level 90.00 mg/L improved growth parameters. There was significant increase in: number of total leaves per plant, shoot dry weight, leaves total chlorophyll content, number of off-shoots, number and length of primary roots, length of the peduncle, number of flowers, number of petals and flower dry weight. Meanwhile leaf carbohydrate contents, phosphorus percentage and leaf iron content were increased significantly compared with the (unsprayed plants). The interaction treatment, spraying nutritional solution PRO.SOL at concentration level 10.00 mg/L with 90 mg Lt chelated iron had a significant increase in all studied growth parameters, i.e., the number of flowers and petals gave 8.33 flowers and 18.67 petals compared with the control treatment which gave 3.33 flowers and 13.00 petals. Meanwhile leaf carbohydrate contents, phosphorus percentage and leaf iron content increased significantly in comparison with the unsprayed plants which gave the least values.展开更多
Background: The goal of this study was to compare the antagonism of elevated dietary Cu (250 mg/kg) from CuS04 on three different Zn sources (ZnS04. H20; [Zn bis(-2-hydroxy-4-(methylthio)butanoic acid)], Zn(H...Background: The goal of this study was to compare the antagonism of elevated dietary Cu (250 mg/kg) from CuS04 on three different Zn sources (ZnS04. H20; [Zn bis(-2-hydroxy-4-(methylthio)butanoic acid)], Zn(HMTBa)2 a chelated Zn methionine hydroxy analogue; and Zn-Methionine), as measured using multiple indices of animal performance in ROSS 308 broilers. Methods: Three experiments were conducted in broiler chicks fed a semi-purified diet. All birds were fed a Zn-deficient diet (8.5 mg/kg diet) for 1 wk, and then provided with the experimental diets for 2 wks. Results: Experiment 1 was a 2 x 2 factorial design with two levels of Cu (8 vs. 250 mg/kg diet from CuSO4) and two Zn sources at 30 mg/kg [ZnSO4. H20 vs. Zn(HMTBa)2]. Elevated Cu impaired growth performance only in birds fed ZnSO4. Compared to ZnSO4. H20, Zn(HMTBa)2 improved feed intake (12 %; P 〈 0.001) and weight gain (12 %, P 〈 0.001) and the benefits were more pronounced in the presence of 250 mg/kg diet Cu. Experiment 2 was a dose titration of ZnSO4- H20 and Zn(HMTBa)2 at 30, 4,5, 60, and 75 mg/kg diet in the presence of 250 mg/kg CuSO4. Feed:gain was decreased and tibia Zn was increased with increasing Zn levels from 30 to 75 mg/kg. Birds fed Zn(HMTBa)2 consumed more food and gained more weight compared to birds fed ZnSO4, especially at lower supplementation levels (30 and 45 mg/kg; interaction P 〈 0,05). Experiment 3 compared two organic Zn sources (Zn(HMTBa)2 vs. Zn-Methionine) at 30 mg/kg with or without 250 mg/kg CuSO4. No interactions were observed between Zn sources and Cu levels on performance or tissue mineral concentrations. High dietary Cu decreased weight gain (P 〈 0.01). Tibia Cu and liver Cu were significantly increased with 250 mg/kg dietary Cu supplementation (P 〈 0.01). No difference was observed between the two Zn sources. Conclusions: Dietary 250 mg/kg Cu significantly impaired feed intake and weight gain in birds fed ZnSO4. H20, but had less impact in birds fed Zn(HMTBa)2. No difference was observed between the two organic zinc sources These results are consistent with the hypothesis that chelated organic Zn is better utilized than inorganic zinc in the presence of elevated Cu.展开更多
Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase th...Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.展开更多
The reaction of Os(RL1)(PPh3)2(CO)Br, 1b, with qui-nolin-8-ol (HQ), 2, has furnished complexes of the type [Os(RL2)(PPh3)2(CO)(Q)], 3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p...The reaction of Os(RL1)(PPh3)2(CO)Br, 1b, with qui-nolin-8-ol (HQ), 2, has furnished complexes of the type [Os(RL2)(PPh3)2(CO)(Q)], 3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). In this process, quinolin-8-olato (Q) undergoes five-membered chelation, the iminium-phenolato function tautomerizing to the imine-phenol function. The trans geometry of the Os(PPh3)2 fragment is consistent with the occurrence of a single 31P resonance near –6.0 ppm in 3. In dichloromethane solution, 3 displays a quasireversible 3+/3 couple near 0.40 V vs. SCE (3+ is the osmium (III) analogue of 3). Coulometrically generated solutions of 3+ displays a strong absorption near 340 nm, 415 nm and 500 nm and are one-electron paramagnetic (low-spin d5, S = 1/2) and show rhombic EPR spectra in 1:1 dichloromethanetoluene solution at 77 K with g values near 2.44, 2.20, 1.83. Distortion parameters using the observed g values have been computed. Solutions of 3 absorb near 420 nm and emit near 510 nm at 298 K and 580 nm at 77 K. The fluorescence is believed to originate from the 3MLCT state.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be...Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.展开更多
BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic ...BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic gains.Chitin-glucan(CG)is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority.To provide an alternative approach to managing patients with IBS,we performed preclinical molecular,cellular,and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS.AIM To evaluate the roles of CG in visceral analgesia,intestinal inflammation,barrier function,and to develop computational molecular models.METHODS Visceral pain was recorded through colorectal distension(CRD)in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS[15 milligrams(mg)/kilogram(kg)]in 33 Sprague-Dawley rats.Intracolonic pressure was regularly assessed during the 9 wk-experiment(weeks 0,3,5,and 7)in animals receiving CG(n=14)at a human equivalent dose(HED)of 1.5 g/d or 3.0 g/d and compared to negative control(tap water,n=11)and positive control(phloroglucinol at 1.5 g/d HED,n=8)groups.The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate(DSS)administered in their drinking water during 14 d.HT-29 cells under basal conditions and after stimulation with lipopolysaccharide(LPS)were treated with CG to evaluate changes in pathways related to analgesia μ-opioid receptor(MOR),cannabinoid receptor 2(CB2),peroxisome proliferator-activated receptor alpha,inflammation[interleukin(IL)-10,IL-1b,and IL-8]and barrier function[mucin 2-5AC,claudin-2,zonula occludens(ZO)-1,ZO-2]using the real-time PCR method.Molecular modelling of CG,LPS,lipoteichoic acid(LTA),and phospholipomannan(PLM)was developed,and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations.Data were expressed as the mean±SEM.RESULTS Daily CG orally-administered to rats or mice was well tolerated without including diarrhea,visceral hypersensitivity,or inflammation,as evaluated at histological and molecular levels.In a model of CRD,CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14%after 2 wk of administration(P<0.01)and reduced inflammation intensity by 50%,resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis.To better reproduce the characteristics of visceral pain in patients with IBS,we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity.CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20%five weeks after colitis induction(P<0.01).When the CG dosage was increased to 3.0 g/d HED,this analgesic effect surpassed that of the spasmolytic agent phloroglucinol,manifesting more rapidly within 3 wk and leading to a 50%inhibition of pain perception(P<0.0001).The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved,at least in part,a significant induction of MOR,CB2 receptor,and IL-10,as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8.CG also significantly upregulated barrier-related genes including muc5AC,claudin-2,and ZO-2.Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids,sequestering gram-negative LPS and gram-positive LTA bacterial toxins,as well as PLM in fungi at the lowesr energy conformations.CONCLUSION CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products,suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBSlike symptoms.展开更多
The present study aimed to evaluate the effects of manganese methionine hydroxyl analog chelated(Mn-MHAC)as a manganese(Mn)source on growth performance and trace element deposition in broilers.A total of 432 Arbor Acr...The present study aimed to evaluate the effects of manganese methionine hydroxyl analog chelated(Mn-MHAC)as a manganese(Mn)source on growth performance and trace element deposition in broilers.A total of 432 Arbor Acres commercial female broilers were fed a basal corn-soybean diet containing Mn at 25.64 mg/kg diet for 10 d.They were then randomly assigned to 6 groups,including a control group(the basal diet),a Mn sulfate group(the basal diet supplemented with Mn at 100 mg/kg diet),and 4 Mn-MHAC groups(the basal diet supplemented with Mn-MHAC at 25,50,75 and 100 mg Mn/kg diet,respectively).The results showed that compared with the control group,groups supplemented with Mn-MHAC had a positive effect on BW(quadratic,P=0.017)and ADG(quadratic,P=0.017).Moreover,the Mn-MHAC(50 mg Mn/kg diet)group had significantly greater BW and ADG(P<0.05)compared with the other Mn-MHAC groups.Trace element deposition results also showed that tibial Mn increased(linear or quadratic,P-0.002 and 0.009,respectively)in groups fed diets with increased levels of Mn-MHAC.In contrast,Fe deposition decreased both in the heart(linear,P-0.020)and tibia(P<0.05).In addition,the Mn-MHAC supplement noticeably lowered serum Mn-SOD activity(linear or quadratic,P-0.048 and 0.019,respectively).The relative mRNA levels of divalent metal transporter 1(DMT1)(P=0.024),ferro-portin 1(FPN1)(P=0.049),and Cu transporter-1(CTR1)(P<0.001)in the duodenum,as well as CTR1 in the jejunum and ileum(P=0.040 and 0.011,respectively)were higher in the Mn-supplemented group than in the control group.Furthermore,the relative mRNA level of DMT1 in the jejunum and ileum of broilers in the Mn-MHAC group(50 mg Mn/kg diet)did not differ from those in the control group,but was lower than those in the Mn sulfate group(P<0.05).In conclusion,Mn-MHAC dietary supplementation improved the growth performance and trace element deposition in broilers.From this study,we recommend the opti-mum Mn-MHAC level to meet the Mn requirement of broilers is 50 to 75 mg Mn/kg diet.展开更多
Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,...Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that c...Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia(leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that fla...Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.展开更多
Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(...Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.展开更多
BACKGROUND Wilson's disease(WD)is a rare metabolic disorder of copper accumulation in organs such as liver,brain,and cornea.Diagnoses and treatments are challenging in settings,where advanced diagnostic tests are ...BACKGROUND Wilson's disease(WD)is a rare metabolic disorder of copper accumulation in organs such as liver,brain,and cornea.Diagnoses and treatments are challenging in settings,where advanced diagnostic tests are unavailable,copper chelating agents are frequently scarce,healthcare professionals lack disease awareness,and medical follow-ups are limited.Prompt diagnoses and treatments help prevent complications,improve patients’quality of life,and ensure a normal life expectancy.The clinical presentations and outcomes of WD can vary within a single family.CASE SUMMARY We present the cases of two siblings(19 and 27 years)from a consanguineous family in rural Ecuador,diagnosed as having WD during a family screening.The male patient,diagnosed at age 19 after his brother’s death from acute liver failure,presented with compensated cirrhosis,neurological symptoms,and bilateral Kayser-Fleischer rings.He developed progressive neurological deterioration during an irregular treatment with D-penicillamine due to medication shortages.His condition improved upon switching to trientine tetrahydrochloride,and his neurological symptoms improved over an 8-year period of follow-ups.The female patient,diagnosed at age 10,exhibited only biochemical alterations.Her treatment history was similar;however,she remained asymptomatic without disease progression over the same follow-up period.We discuss the potential influence of epigenetic mechanisms and modifier genes on the various phenotypes,emphasizing the need for research in these areas to optimize therapeutic strategies.CONCLUSION Our patients’medical histories show how early diagnosis and treatment can prevent disease progression;and,how suboptimal treatments impact disease outcomes.展开更多
This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extra...This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.展开更多
基金financially supported by the Natural Science Fundation of China (No.21376229) the Science and Technology Development Plan of Shanxi Province,China (No.20130321035-02)
文摘Optimization of factors influencing the experiments on reactions involving 8 different chelating agents and soluble Fe(III)/Fe(II) salts was carried out to yield chelated iron complexes. A combination of optimized influencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83—13.56 g/L at a redox potential of 0.185—0.3. The desulfurization performance of Fe(III)/Fe(II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2 S and N2 in a cross-flow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efficiency of over 99% along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.
基金financially supported by the National Science Foundation of China (No. 21376229)the Science and Technology Development Plan of Shanxi Province (No. 20130321035-02)
文摘By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.
基金Supported by the National Natural Science Foundation of China(21376229)the Excellent Innovation Projects of Postgraduates of Shanxi Province(20103084)the Science and Technology Innovation Projects of Shanxi Province Colleges and Universities(2013128)
文摘A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as the rotation speed of electrode,voltage,and inlet air and liquid flow rates,on the regeneration rate was investigated.Compared with the traditional tank-type reactor,the regeneration rate with the new electrochemical reactor was increased significantly.Under the optimum conditions,the regeneration rate was increased from 45.3%to 84.8%.Experimental results of continuous operation indicated that the new electrochemical regeneration method had some merits including higher regeneration efficiency,smaller equipment size and good stability in operation.
文摘[Objective]The paper was to study effects of small peptide chelated trace elements(copper,iron,zinc and manganese)on growth performance,chicken quality and antioxidant capacity of rapid yellow feather broilers.[Method]Three hundred one-day-old yellow feather broilers with similar body weight were selected and randomly divided into three treatments:inorganic trace element group(basal diet+inorganic trace elements),organic trace element group(basal diet+small peptide chelated trace elements)and compound group(basal diet+50%inorganic trace elements+50%small peptide chelated trace elements).There were 10 replicates per treatment and 10 chickens per replicate.The trial lasted for 63 d.[Result]①Compared to inorganic trace element group,average daily gain(ADG)of yellow feather broilers in organic trace element group was significantly increased over the whole period(P<0.05).②There was no significant difference in slaughter performance and immune organ indices among the three test groups(P>0.05).③There was no significant difference in breast muscle pH,chicken color,drip loss,and shear force among the three groups(P>0.05),but cooking loss of chicken breast in inorganic trace element group was 27.46%and 22.53%higher than those in organic trace element group and compound group,respectively(P<0.05).④MDA content in serum in organic trace element group was 15.61%lower than that in inorganic trace element group(P<0.05).[Conclusion]Complete substitution of inorganic copper,iron,zinc and manganese by small peptide chelated copper,iron,zinc,and manganese significantly increases ADG of broilers,improves quality of chicken breast,and enhances antioxidant capacity.
文摘The aim of this research was to study the effect of spraying nutritional solution "PRO.SOL" and chelated iron on vegetative and floral growth characteristics on Gazania plant. Randomized Complete Block Design (R.C.B.D) was adopted utilizing two applications in three replicates. Three concentration levels of nutritional solution PRO.SOL (10.00, 5.00 and 0.00 mg/L) and four concentration levels of chelated iron (90.00, 60.00, 30.00 and 0.00 mg/L) were applied in this experiment. The interaction between the two factors was also measured. The mean values were compared using L.S.D test at probability level 0.05. Spraying PRO.SOL at concentration 10.00 mg/L or chelated iron concentration level 90.00 mg/L improved growth parameters. There was significant increase in: number of total leaves per plant, shoot dry weight, leaves total chlorophyll content, number of off-shoots, number and length of primary roots, length of the peduncle, number of flowers, number of petals and flower dry weight. Meanwhile leaf carbohydrate contents, phosphorus percentage and leaf iron content were increased significantly compared with the (unsprayed plants). The interaction treatment, spraying nutritional solution PRO.SOL at concentration level 10.00 mg/L with 90 mg Lt chelated iron had a significant increase in all studied growth parameters, i.e., the number of flowers and petals gave 8.33 flowers and 18.67 petals compared with the control treatment which gave 3.33 flowers and 13.00 petals. Meanwhile leaf carbohydrate contents, phosphorus percentage and leaf iron content increased significantly in comparison with the unsprayed plants which gave the least values.
文摘Background: The goal of this study was to compare the antagonism of elevated dietary Cu (250 mg/kg) from CuS04 on three different Zn sources (ZnS04. H20; [Zn bis(-2-hydroxy-4-(methylthio)butanoic acid)], Zn(HMTBa)2 a chelated Zn methionine hydroxy analogue; and Zn-Methionine), as measured using multiple indices of animal performance in ROSS 308 broilers. Methods: Three experiments were conducted in broiler chicks fed a semi-purified diet. All birds were fed a Zn-deficient diet (8.5 mg/kg diet) for 1 wk, and then provided with the experimental diets for 2 wks. Results: Experiment 1 was a 2 x 2 factorial design with two levels of Cu (8 vs. 250 mg/kg diet from CuSO4) and two Zn sources at 30 mg/kg [ZnSO4. H20 vs. Zn(HMTBa)2]. Elevated Cu impaired growth performance only in birds fed ZnSO4. Compared to ZnSO4. H20, Zn(HMTBa)2 improved feed intake (12 %; P 〈 0.001) and weight gain (12 %, P 〈 0.001) and the benefits were more pronounced in the presence of 250 mg/kg diet Cu. Experiment 2 was a dose titration of ZnSO4- H20 and Zn(HMTBa)2 at 30, 4,5, 60, and 75 mg/kg diet in the presence of 250 mg/kg CuSO4. Feed:gain was decreased and tibia Zn was increased with increasing Zn levels from 30 to 75 mg/kg. Birds fed Zn(HMTBa)2 consumed more food and gained more weight compared to birds fed ZnSO4, especially at lower supplementation levels (30 and 45 mg/kg; interaction P 〈 0,05). Experiment 3 compared two organic Zn sources (Zn(HMTBa)2 vs. Zn-Methionine) at 30 mg/kg with or without 250 mg/kg CuSO4. No interactions were observed between Zn sources and Cu levels on performance or tissue mineral concentrations. High dietary Cu decreased weight gain (P 〈 0.01). Tibia Cu and liver Cu were significantly increased with 250 mg/kg dietary Cu supplementation (P 〈 0.01). No difference was observed between the two Zn sources. Conclusions: Dietary 250 mg/kg Cu significantly impaired feed intake and weight gain in birds fed ZnSO4. H20, but had less impact in birds fed Zn(HMTBa)2. No difference was observed between the two organic zinc sources These results are consistent with the hypothesis that chelated organic Zn is better utilized than inorganic zinc in the presence of elevated Cu.
基金supported by the National Natural Science Foundation of China(Grant Nos.61905086,62174067,62175085)Science and Technology Development Planning of Jilin Province(Project Nos.20190101024JH,20200201296JC)+1 种基金the Hong Kong Scholars Program(Project No.XJ2020028)grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project Nos.11300418 and 11300419).
文摘Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.
文摘The reaction of Os(RL1)(PPh3)2(CO)Br, 1b, with qui-nolin-8-ol (HQ), 2, has furnished complexes of the type [Os(RL2)(PPh3)2(CO)(Q)], 3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). In this process, quinolin-8-olato (Q) undergoes five-membered chelation, the iminium-phenolato function tautomerizing to the imine-phenol function. The trans geometry of the Os(PPh3)2 fragment is consistent with the occurrence of a single 31P resonance near –6.0 ppm in 3. In dichloromethane solution, 3 displays a quasireversible 3+/3 couple near 0.40 V vs. SCE (3+ is the osmium (III) analogue of 3). Coulometrically generated solutions of 3+ displays a strong absorption near 340 nm, 415 nm and 500 nm and are one-electron paramagnetic (low-spin d5, S = 1/2) and show rhombic EPR spectra in 1:1 dichloromethanetoluene solution at 77 K with g values near 2.44, 2.20, 1.83. Distortion parameters using the observed g values have been computed. Solutions of 3 absorb near 420 nm and emit near 510 nm at 298 K and 580 nm at 77 K. The fluorescence is believed to originate from the 3MLCT state.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金This work is financially supported by National Natural Science Foundation of China(NSFC-No.52173257 and 52372064).
文摘Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
基金Supported by the Service Public de Wallonie(SPW-EER,convention 8588,Belgium).
文摘BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic gains.Chitin-glucan(CG)is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority.To provide an alternative approach to managing patients with IBS,we performed preclinical molecular,cellular,and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS.AIM To evaluate the roles of CG in visceral analgesia,intestinal inflammation,barrier function,and to develop computational molecular models.METHODS Visceral pain was recorded through colorectal distension(CRD)in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS[15 milligrams(mg)/kilogram(kg)]in 33 Sprague-Dawley rats.Intracolonic pressure was regularly assessed during the 9 wk-experiment(weeks 0,3,5,and 7)in animals receiving CG(n=14)at a human equivalent dose(HED)of 1.5 g/d or 3.0 g/d and compared to negative control(tap water,n=11)and positive control(phloroglucinol at 1.5 g/d HED,n=8)groups.The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate(DSS)administered in their drinking water during 14 d.HT-29 cells under basal conditions and after stimulation with lipopolysaccharide(LPS)were treated with CG to evaluate changes in pathways related to analgesia μ-opioid receptor(MOR),cannabinoid receptor 2(CB2),peroxisome proliferator-activated receptor alpha,inflammation[interleukin(IL)-10,IL-1b,and IL-8]and barrier function[mucin 2-5AC,claudin-2,zonula occludens(ZO)-1,ZO-2]using the real-time PCR method.Molecular modelling of CG,LPS,lipoteichoic acid(LTA),and phospholipomannan(PLM)was developed,and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations.Data were expressed as the mean±SEM.RESULTS Daily CG orally-administered to rats or mice was well tolerated without including diarrhea,visceral hypersensitivity,or inflammation,as evaluated at histological and molecular levels.In a model of CRD,CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14%after 2 wk of administration(P<0.01)and reduced inflammation intensity by 50%,resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis.To better reproduce the characteristics of visceral pain in patients with IBS,we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity.CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20%five weeks after colitis induction(P<0.01).When the CG dosage was increased to 3.0 g/d HED,this analgesic effect surpassed that of the spasmolytic agent phloroglucinol,manifesting more rapidly within 3 wk and leading to a 50%inhibition of pain perception(P<0.0001).The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved,at least in part,a significant induction of MOR,CB2 receptor,and IL-10,as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8.CG also significantly upregulated barrier-related genes including muc5AC,claudin-2,and ZO-2.Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids,sequestering gram-negative LPS and gram-positive LTA bacterial toxins,as well as PLM in fungi at the lowesr energy conformations.CONCLUSION CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products,suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBSlike symptoms.
基金National key research and development program of China(2016YFD0200900,2016YFD0501200)the Chinese Academy of Science STS Project(KFJ-STS-QYZD-095)Agricultural innovation project of Hunan Province(2019TD01).
文摘The present study aimed to evaluate the effects of manganese methionine hydroxyl analog chelated(Mn-MHAC)as a manganese(Mn)source on growth performance and trace element deposition in broilers.A total of 432 Arbor Acres commercial female broilers were fed a basal corn-soybean diet containing Mn at 25.64 mg/kg diet for 10 d.They were then randomly assigned to 6 groups,including a control group(the basal diet),a Mn sulfate group(the basal diet supplemented with Mn at 100 mg/kg diet),and 4 Mn-MHAC groups(the basal diet supplemented with Mn-MHAC at 25,50,75 and 100 mg Mn/kg diet,respectively).The results showed that compared with the control group,groups supplemented with Mn-MHAC had a positive effect on BW(quadratic,P=0.017)and ADG(quadratic,P=0.017).Moreover,the Mn-MHAC(50 mg Mn/kg diet)group had significantly greater BW and ADG(P<0.05)compared with the other Mn-MHAC groups.Trace element deposition results also showed that tibial Mn increased(linear or quadratic,P-0.002 and 0.009,respectively)in groups fed diets with increased levels of Mn-MHAC.In contrast,Fe deposition decreased both in the heart(linear,P-0.020)and tibia(P<0.05).In addition,the Mn-MHAC supplement noticeably lowered serum Mn-SOD activity(linear or quadratic,P-0.048 and 0.019,respectively).The relative mRNA levels of divalent metal transporter 1(DMT1)(P=0.024),ferro-portin 1(FPN1)(P=0.049),and Cu transporter-1(CTR1)(P<0.001)in the duodenum,as well as CTR1 in the jejunum and ileum(P=0.040 and 0.011,respectively)were higher in the Mn-supplemented group than in the control group.Furthermore,the relative mRNA level of DMT1 in the jejunum and ileum of broilers in the Mn-MHAC group(50 mg Mn/kg diet)did not differ from those in the control group,but was lower than those in the Mn sulfate group(P<0.05).In conclusion,Mn-MHAC dietary supplementation improved the growth performance and trace element deposition in broilers.From this study,we recommend the opti-mum Mn-MHAC level to meet the Mn requirement of broilers is 50 to 75 mg Mn/kg diet.
基金sponsored by the Central Government Guides Local Scientific and Technological Development Fund Project(YDZX 20201400001443)Shanxi International Science and Technology Cooperation Project(201803D421065)+2 种基金National Natural Science Foundation of China(Grant No.30672621 and 81173473)Taiyuan City Science and Technology Project Special Talents Star Project(120247-08)Basic Research Project of Shanxi Province(202103021223241).
文摘Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金supported by MH101874 (to CFZ)MH122379 (to CFZ)the Taylor Family Institute for Innovative Psychiatric Research and the Bantly Foundation (to CFZ)。
文摘Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia(leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
基金supported by the National Natural Science Foundation of China (Grant Nos.32171849 and 32271946).
文摘Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U22A20140)the Independent Cultivation Program of Innovation Team of Ji'nan City(No.2019GXRC011)the National Natural Science Foundation of China(No.62001189)
文摘Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.
文摘BACKGROUND Wilson's disease(WD)is a rare metabolic disorder of copper accumulation in organs such as liver,brain,and cornea.Diagnoses and treatments are challenging in settings,where advanced diagnostic tests are unavailable,copper chelating agents are frequently scarce,healthcare professionals lack disease awareness,and medical follow-ups are limited.Prompt diagnoses and treatments help prevent complications,improve patients’quality of life,and ensure a normal life expectancy.The clinical presentations and outcomes of WD can vary within a single family.CASE SUMMARY We present the cases of two siblings(19 and 27 years)from a consanguineous family in rural Ecuador,diagnosed as having WD during a family screening.The male patient,diagnosed at age 19 after his brother’s death from acute liver failure,presented with compensated cirrhosis,neurological symptoms,and bilateral Kayser-Fleischer rings.He developed progressive neurological deterioration during an irregular treatment with D-penicillamine due to medication shortages.His condition improved upon switching to trientine tetrahydrochloride,and his neurological symptoms improved over an 8-year period of follow-ups.The female patient,diagnosed at age 10,exhibited only biochemical alterations.Her treatment history was similar;however,she remained asymptomatic without disease progression over the same follow-up period.We discuss the potential influence of epigenetic mechanisms and modifier genes on the various phenotypes,emphasizing the need for research in these areas to optimize therapeutic strategies.CONCLUSION Our patients’medical histories show how early diagnosis and treatment can prevent disease progression;and,how suboptimal treatments impact disease outcomes.
文摘This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.