In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capaci...Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.展开更多
The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that ...The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that the highest valence band( HVB )attd the lowest conduction band( LCB ) are mainly attribuled to Co3d, Ni3d and O2p atomic orbitals. The property of a semiconductor is shown from the gap between HVB and LCB. The gap of Ni-doped one is less than that of Ca3 Co2 O6. The non-metal bond or ceramic characteristic of Ni-doped one is weaker than that of Ca3 Co2 O6, but the metal characteristics of Ni-doped one are stronger than those of Ca3 Co2 O6. The thermoelectric property should be improved by adding Ni element into the system of Ca3 Co2 O6 .展开更多
The molecular geometries and dissociation energies of AnO (An = Bk–Lr) molecules were first obtained at thecoupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] level of theory. Four hybrid ...The molecular geometries and dissociation energies of AnO (An = Bk–Lr) molecules were first obtained at thecoupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] level of theory. Four hybrid functionals,B3LYP, M06-2X, TPSSh, and PBE0, were also employed in the calculations for the sake of comparison. In comparison ofthe CCSD(T) results, B3LYP, TPSSh, and PBE0 functionals can obtain more appropriate results than M06-2X and MP2.The analyses on molecular orbitals show that the 7s, 6d, and 5f atomic orbitals of actinide (An) atoms participate in thebonding of An–O bonds. The partial covalent nature between An and O atoms is revealed by QTAIM analyses.展开更多
Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-ec...Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-economic synthesis.Undoubtedly,selectively activating and transforming multiple inert chemical bonds is an even more intriguing and demanding task in synthetic chemistry.However,due to its inherent complexity and extreme challenges,this endeavour is rarely accomplished.We report a copper-mediated complete cleavage and selective transformation of multiple inert chemical bonds of three easily available feedstocks,i.e.,a sp^(2)C—H bond in indoles,three sp^(3)C—H bonds and one C—N bond in a methyl carbon atom in TMEDA,and the C≡N triple bond in CH_(3)CN.This reaction proceeds via tandem carbon and nitrogen atom transfer,and allows for the direct and efficient cyanation of indoles,presenting a simple and direct alternative for synthesizing 3-cyanoindoles.展开更多
Eye trauma, decreased immunity, and contact lens wear often cause serious bacterial infections and irreversible corneal damage. To realize the responsive release of antibiotics such as gentamicin sulfate(GS), a novel ...Eye trauma, decreased immunity, and contact lens wear often cause serious bacterial infections and irreversible corneal damage. To realize the responsive release of antibiotics such as gentamicin sulfate(GS), a novel antibacterial contact lens was constructed through self-assembly of antibiotics loaded ADAGS/PEI(polyethyleneimine) multilayer films on the surface. Both in vitro and in vivo antibacterial tests demonstrated high efficient and fast antibacterial property based on the smart responsive to bacterial infections and reversible drug loading and release.展开更多
Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically...Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.展开更多
By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the e...By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the experimental values.展开更多
Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemic...Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemically bonded Mn0.5Cd_(0.5)S/BiOBr S-scheme heterostructure with oxygen vacancies is ingeniously developed through a facile in-situ solvothermal synthesis.The designed Mn0.5Cd_(0.5)S/BiOBr heterojunction exhibits eminently reinforced photo-activity for destruction of tetracycline hydrochloride and Cr(VI)as compared with its individual components.This substantial photo-redox performance amelioration is benefitted from the creation of an intense internal electric field(IEF)via supplying powerful driving force and migration highway by interfacial chemical bond to foster the S-scheme electron/hole disintegration.More intriguingly,the IEF at the hetero-interface drives the fast consumption of the photo-induced holes in Mn0.5Cd_(0.5)S by the photoelectrons from BiOBr,profoundly boosting the enrichment of active photo-carriers and sparing the photo-corrosion of Mn0.5Cd_(0.5)S.Furthermore,Mn0.5Cd_(0.5)S/BiOBr with exceptional anti-interference property can work efficiently in real water matrices.Multiple uses of the recycled Mn0⋅5Cd0⋅5S/BiOBr evidence its prominent robustness and stability.This achievement indicates the vast potential of chemically bonded S-scheme photosystems with structural defects in the design of photo-responsive materials for effective wastewater treatment.展开更多
The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The cal...The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized ...The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.展开更多
With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issue...With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.展开更多
Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid...Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.展开更多
Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covale...Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covalent bond,so TiB 2 has high melting point,hardness and chemical stability.Titanium atom releases two electrons to form Ti 2+ ions,and a boron atom gets one electron to come into B- ion.B- takes the sp2 hybrid and forms σ bonds to link other boron atoms in the same layer.The other one 2p z orbital of every B- ion in the same layer interacts each other to form the π molecular orbital,so TiB 2 has fine electrical property.The calculated density of state is close to the result of XPS experiment of TiB 2.Mainly Ti3d and B2p atomic orbitals contribute the total DOS near the Fermi level.展开更多
The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there i...The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3 SiC2 , adding a proper quantity of Al can promote the formation of Ti3 SiC2 . The density of stnte shows that there is a mixed conductor character in both of Ti3 SiC2 and adding Al element. Ti3 SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.展开更多
Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as s...Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as starting materials. This work focused on investigating the relationship between the bond change in the castable matrix and the strength of the castable with 5 mass% microsilica or without microsilica after heat treatment at 110, 800 and 1 000 ℃, respectively. Chemical bond changes between the microsilica and hy- drates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃ were investigated by XPS and FTIR. The results show that Si-O-Al bonds form be- tween the microsilica and hydrates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃. Therefore, the increased strength of castable specimens is attributed to the formation of Si-O-Al bonds from 110 ℃ to 800 ℃.展开更多
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul...The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.展开更多
Chemical bond properties of YBa 2Cu 3O 7 were studied by using the average ba nd-gap model. The calculated results show that the covalency of Cu(1)-O bond i s 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shi...Chemical bond properties of YBa 2Cu 3O 7 were studied by using the average ba nd-gap model. The calculated results show that the covalency of Cu(1)-O bond i s 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor h v defined b y covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon inte raction and covalency is employed to explain that the Cu(2)-O plane is more im portant than the Cu(1)-O chain on the superconductivity in the Y-123 compound s.展开更多
By using the average band-gap model, the chemical bond properties of(La_(1-x)M_x)_2CuO_4(M=Ba, Sr) were calculated . The calculated covalencies for Cu-O and La-O bondin the compounds are 0.3 and 0.03 respectively. Mos...By using the average band-gap model, the chemical bond properties of(La_(1-x)M_x)_2CuO_4(M=Ba, Sr) were calculated . The calculated covalencies for Cu-O and La-O bondin the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of ^(57)Fe doped inLa_2CuO_4 and ^(119)Sn doped in La_2CuO_4 were calculated by using the chemical surrounding factordefined by covalency and electronic polarizability. Four valence state tin and three valence ironsites were identified in ^(57)Fe and ^(119)Sn展开更多
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
基金Financial support from the National Natural Science Foundation of China (22178190)the Major Science and Technology Innovation Project of Shandong Province (2018CXGC1102) is gratefully acknowledged。
文摘Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.
文摘The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that the highest valence band( HVB )attd the lowest conduction band( LCB ) are mainly attribuled to Co3d, Ni3d and O2p atomic orbitals. The property of a semiconductor is shown from the gap between HVB and LCB. The gap of Ni-doped one is less than that of Ca3 Co2 O6. The non-metal bond or ceramic characteristic of Ni-doped one is weaker than that of Ca3 Co2 O6, but the metal characteristics of Ni-doped one are stronger than those of Ca3 Co2 O6. The thermoelectric property should be improved by adding Ni element into the system of Ca3 Co2 O6 .
基金Project supported by the Education Department in Sichuan Province,China(Grant No.15ZB0006).
文摘The molecular geometries and dissociation energies of AnO (An = Bk–Lr) molecules were first obtained at thecoupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] level of theory. Four hybrid functionals,B3LYP, M06-2X, TPSSh, and PBE0, were also employed in the calculations for the sake of comparison. In comparison ofthe CCSD(T) results, B3LYP, TPSSh, and PBE0 functionals can obtain more appropriate results than M06-2X and MP2.The analyses on molecular orbitals show that the 7s, 6d, and 5f atomic orbitals of actinide (An) atoms participate in thebonding of An–O bonds. The partial covalent nature between An and O atoms is revealed by QTAIM analyses.
基金support from the National Natural Science Foundation of China(Grant Nos.22378106,21878072,21706058,and 22002169)the Natural Science Foundation of Hunan Province(Grant No.2020JJ2011)the China Postdoctoral Science Foundation(No.2019M662774).
文摘Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-economic synthesis.Undoubtedly,selectively activating and transforming multiple inert chemical bonds is an even more intriguing and demanding task in synthetic chemistry.However,due to its inherent complexity and extreme challenges,this endeavour is rarely accomplished.We report a copper-mediated complete cleavage and selective transformation of multiple inert chemical bonds of three easily available feedstocks,i.e.,a sp^(2)C—H bond in indoles,three sp^(3)C—H bonds and one C—N bond in a methyl carbon atom in TMEDA,and the C≡N triple bond in CH_(3)CN.This reaction proceeds via tandem carbon and nitrogen atom transfer,and allows for the direct and efficient cyanation of indoles,presenting a simple and direct alternative for synthesizing 3-cyanoindoles.
基金supported by the National Natural Science Foundation of China(Nos.31771026 and 81771984)Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University(J02-20190203)the Wenzhou Key Program of Scientific and Technological Innovation(No.ZY2019017)。
文摘Eye trauma, decreased immunity, and contact lens wear often cause serious bacterial infections and irreversible corneal damage. To realize the responsive release of antibiotics such as gentamicin sulfate(GS), a novel antibacterial contact lens was constructed through self-assembly of antibiotics loaded ADAGS/PEI(polyethyleneimine) multilayer films on the surface. Both in vitro and in vivo antibacterial tests demonstrated high efficient and fast antibacterial property based on the smart responsive to bacterial infections and reversible drug loading and release.
基金financially supported by Outstanding Talent Research Fund of Zhengzhou University,China Postdoc toral Science Foundation(2020TQ0277,2020M682328)Central Plains Science and Technology Innovation Leader Project(214200510006)+1 种基金China Scholarship Council(No.202108410356)Postdoctoral Science Foundation of Henan province(202002010).
文摘Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.
文摘By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the experimental values.
基金supported by the National Natural Science Foundation of China(U1809214)the Natural Science Foundation of Zhejiang Province(LY20E080014 and LTGN23E080001)the Science and Technology Project of Zhoushan(2022C41011).
文摘Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemically bonded Mn0.5Cd_(0.5)S/BiOBr S-scheme heterostructure with oxygen vacancies is ingeniously developed through a facile in-situ solvothermal synthesis.The designed Mn0.5Cd_(0.5)S/BiOBr heterojunction exhibits eminently reinforced photo-activity for destruction of tetracycline hydrochloride and Cr(VI)as compared with its individual components.This substantial photo-redox performance amelioration is benefitted from the creation of an intense internal electric field(IEF)via supplying powerful driving force and migration highway by interfacial chemical bond to foster the S-scheme electron/hole disintegration.More intriguingly,the IEF at the hetero-interface drives the fast consumption of the photo-induced holes in Mn0.5Cd_(0.5)S by the photoelectrons from BiOBr,profoundly boosting the enrichment of active photo-carriers and sparing the photo-corrosion of Mn0.5Cd_(0.5)S.Furthermore,Mn0.5Cd_(0.5)S/BiOBr with exceptional anti-interference property can work efficiently in real water matrices.Multiple uses of the recycled Mn0⋅5Cd0⋅5S/BiOBr evidence its prominent robustness and stability.This achievement indicates the vast potential of chemically bonded S-scheme photosystems with structural defects in the design of photo-responsive materials for effective wastewater treatment.
基金Project (60571043) supported by the National Natural Science Foundation of ChinaProject (11JJ2002) supported by the Natural Science Foundation of Hunan Province, China
文摘The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
基金Project(50474051)supported by the National Natural Science Foundation of China
文摘The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.
基金supported by Basic Science Center Project of National Natural Science Foundation of China under grant No.51788104the National Natural Science Foundation of China (grant nos.51772301 and 21773264)+1 种基金the National Key R&D Program of China (grant no.2016YFA0202500)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant no.XDA09010300)
文摘With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.
基金the financial support of the program for the New Century Excellent Talents in University(Grant No.NCET-05-0278)the National Natural Science Foundation of China(Grant No.20471012)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200322)the Research Fund for the Doctoral Program of Higher Education(Grant No.20040141004).
文摘Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.
文摘Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covalent bond,so TiB 2 has high melting point,hardness and chemical stability.Titanium atom releases two electrons to form Ti 2+ ions,and a boron atom gets one electron to come into B- ion.B- takes the sp2 hybrid and forms σ bonds to link other boron atoms in the same layer.The other one 2p z orbital of every B- ion in the same layer interacts each other to form the π molecular orbital,so TiB 2 has fine electrical property.The calculated density of state is close to the result of XPS experiment of TiB 2.Mainly Ti3d and B2p atomic orbitals contribute the total DOS near the Fermi level.
文摘The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3 SiC2 , adding a proper quantity of Al can promote the formation of Ti3 SiC2 . The density of stnte shows that there is a mixed conductor character in both of Ti3 SiC2 and adding Al element. Ti3 SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.
文摘Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as starting materials. This work focused on investigating the relationship between the bond change in the castable matrix and the strength of the castable with 5 mass% microsilica or without microsilica after heat treatment at 110, 800 and 1 000 ℃, respectively. Chemical bond changes between the microsilica and hy- drates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃ were investigated by XPS and FTIR. The results show that Si-O-Al bonds form be- tween the microsilica and hydrates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃. Therefore, the increased strength of castable specimens is attributed to the formation of Si-O-Al bonds from 110 ℃ to 800 ℃.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of Computational and Stochastic Mathematics of Ministry of Education of ChinaProject(2013GK3130)supported by the Scientific and Technological Plan of Hunan Province,China
文摘The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.
文摘Chemical bond properties of YBa 2Cu 3O 7 were studied by using the average ba nd-gap model. The calculated results show that the covalency of Cu(1)-O bond i s 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor h v defined b y covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon inte raction and covalency is employed to explain that the Cu(2)-O plane is more im portant than the Cu(1)-O chain on the superconductivity in the Y-123 compound s.
文摘By using the average band-gap model, the chemical bond properties of(La_(1-x)M_x)_2CuO_4(M=Ba, Sr) were calculated . The calculated covalencies for Cu-O and La-O bondin the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of ^(57)Fe doped inLa_2CuO_4 and ^(119)Sn doped in La_2CuO_4 were calculated by using the chemical surrounding factordefined by covalency and electronic polarizability. Four valence state tin and three valence ironsites were identified in ^(57)Fe and ^(119)Sn