Chemical engineering is a broad field in terms of the scope of practice but the discipline has been united by a few intellectually coherent principles. Among them, thermodynamics, reaction kinetics and transport pheno...Chemical engineering is a broad field in terms of the scope of practice but the discipline has been united by a few intellectually coherent principles. Among them, thermodynamics, reaction kinetics and transport phenomena are often considered as the cornerstones, providing support for the design and operation of diverse chemical processes for power generation and production of industrial goods such as plastics, gasoline and ammonia. Traditionally, these industrial processes use fossil fuels as the raw materials and are responsible for significant greenhouse gas emissions. As fossil-energy-based processes are deemed phasing out , development of alternative routes with renewable energy and sustainable feedstock is calling for the expansion of the knowledge base such that eco-friendly chemical processes can be quantified, controlled and optimized with high precision. This article offers some perspectives on possible engineering developments to accelerate the paradigm shift from fossil fuels to renewable energy.展开更多
文摘Chemical engineering is a broad field in terms of the scope of practice but the discipline has been united by a few intellectually coherent principles. Among them, thermodynamics, reaction kinetics and transport phenomena are often considered as the cornerstones, providing support for the design and operation of diverse chemical processes for power generation and production of industrial goods such as plastics, gasoline and ammonia. Traditionally, these industrial processes use fossil fuels as the raw materials and are responsible for significant greenhouse gas emissions. As fossil-energy-based processes are deemed phasing out , development of alternative routes with renewable energy and sustainable feedstock is calling for the expansion of the knowledge base such that eco-friendly chemical processes can be quantified, controlled and optimized with high precision. This article offers some perspectives on possible engineering developments to accelerate the paradigm shift from fossil fuels to renewable energy.