The chemical equilibrium and reaction kinetic behavior in the synthesis of polyoxymethylene dimethyl ethers (DMMn) were investigated over sulfated titania in order to reveal the decisive factor controlling the react...The chemical equilibrium and reaction kinetic behavior in the synthesis of polyoxymethylene dimethyl ethers (DMMn) were investigated over sulfated titania in order to reveal the decisive factor controlling the reaction. The results showed that the molar ratio of adjacent DMMn products in equilibrium solution had the same value, which depended absolutely on the reaction temperature. Meanwhile, the reactions had the same DMMn products distributions under varied reaction conditions. The equilibrium constants of the related step-wise reactions for DMMn formation were equal, which were calculated based on the bulk compositions of the reaction solution. And thus, the selectivity to DMMn was mainly controlled by the chemical equilibrium, i.e., thermodynamic control. In brief, the present results provide some guidance for future synthesis of DMMn.展开更多
Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor inter...Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal ti- tration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the differ- ent methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.展开更多
A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. ...A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.展开更多
An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved....An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.展开更多
By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the e...By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the experimental values.展开更多
For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during...For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during quasi-steady state period, is introduced with the concept of non-equilibrium stationary state. The main idea is based on thermodynamic driving forces, which result in non-zero thermodynamic fluxes and lead to chemical reaction far away from thermodynamic equilibrium. There exists certain dynamic equilibrium relationship between rates of diffusion fluxes in liquid phase of reactants or products and the rate equation of chemical reaction when welding is in quasi-steady state. As result of this, a group of non-linear equations containing concentrations of all substances at interface of slag/liquid-metal may be established. Moreover the stability of this non-equilibrium stationary state is discussed using dissipative structure theory and it is concluded theoretically that this non-equilibrium stationary state for welding chemical reaction is of stability.展开更多
In this paper, a third-order exponential time differencing scheme, named ETDRK3, was investigated for large time stepping in the computation of hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was u...In this paper, a third-order exponential time differencing scheme, named ETDRK3, was investigated for large time stepping in the computation of hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was used for the spatial discretization. The efficient implementation of the scheme with diagonalization of Jacobin matrix was established and carried out for the semi-cylindrical around flow. Current observations showed that the numerical results were in good agreement with those obtained by the classical explicit three-stage Runge-Kutta scheme (RK3) and implicit LU scheme. Efficiency assessments promised the effectiveness of the ETDRK3 scheme. The rationality of the application of this scheme was proved by its preferable accuracy and efficiency.展开更多
The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissol...The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.展开更多
A chemical model,based on Pitzer activity coefficient model,is developed with a speciation approach to describe the solubility and chemistry of nesquehonite in concentrated chloride solutions.The chemical equilibrium ...A chemical model,based on Pitzer activity coefficient model,is developed with a speciation approach to describe the solubility and chemistry of nesquehonite in concentrated chloride solutions.The chemical equilibrium constants for nesquehonite and aqueous species,i.e.0 3 MgCO,3 MgHCO,and MgOH +,are precisely calculated as a function of temperature according to the Van't Hoff equation by use of standard Gibbs free energy,standard formation enthalpy and heat capacity.The most recent solubility data are regressed to obtain new Pitzer parameters with good agreement.The predictive ability of the new model is improved significantly in comparison with previous models.The behavior of speciation chemistry for nesquehonite in various chloride media is explained through this modeling work on the basis of the 2 3 Mg /CO bearing species distribution,activity coefficient and pH changes.展开更多
A comprehensive investigation of heavy metal pollutants in Xiangjiang river was accomplished to evaluate their chemical stability through three different ways: (1) Chemical speciation by direct measurements; (2) Chemi...A comprehensive investigation of heavy metal pollutants in Xiangjiang river was accomplished to evaluate their chemical stability through three different ways: (1) Chemical speciation by direct measurements; (2) Chemical equilibrium model simulation; (3) Sediment extraction experiments. All the results demonstrated that the directly bioavailable fraction was in a very limited amount. The metal bound to organic ligands, adsorbed particles and precipitated species presented a buffer for solution species. The majority of metals occured in the residues as solid particulates. It was inferred that the heavy metal pollutants in this aquatic system exhibited a high chemical stability. The critical limits of discharging load and pH values were suggested.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneit...The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneities in fluids. The method is based on the series expansion of thermophysical values by powers of the monomer fraction density. Unlike the virial expansion by powers of the total density, the series expansion terms in this method directly reflect properties of the corresponding cluster fractions. The internal energy had been selected among thermophysical properties as the most informative for this method. The thermal analysis of its series expansion coefficients permits to estimate the temperature dependence of the pair bond parameters, the clusters’ bond energies and equilibrium constants, the structural transitions between dominating isomers of clusters. The application of method to different pure fluids, including noble and molecular gases with van der Waals and polar molecular interactions, brings unknown clusters’ characteristics for the fluids under investigation. The thermal analysis of the ordinary and heavy Water vapors points on no trivial isotopic effects. The unpredictable growth of the pair bond energy with temperature in Alkanes points on existence in hydrocarbons of some unknown molecular interaction forces in addition to dispersion forces.展开更多
The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient ...The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient were determined as K_(MgS)=6.76×10^(-5)and e_S^(Mg)=-9.1.展开更多
The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of...The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.展开更多
The Fourier transform infrared spectra of the cluster anion[Cl2Fe2S2MoS2Cu(PPh3)2]- are measured between 550 and 90 cm(-1).The empirical assignments have been made for the vibration bands of main valence bonds.In orde...The Fourier transform infrared spectra of the cluster anion[Cl2Fe2S2MoS2Cu(PPh3)2]- are measured between 550 and 90 cm(-1).The empirical assignments have been made for the vibration bands of main valence bonds.In order to verify the assignments of the bands and obtain the force constants the approximate normal coordinate analysis for the title anion has been carried out.It is found that the calculated frequencies are in good agreement with the observed ones.While Quantum-Chemical calculation is used to elucidate the chemical bonding characteristics for the title anion.展开更多
The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexan...The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexane and polydimethylsiloxane(PDMS)-hexane systems were studied,and the Henry’s law constant was obtained by measuring the gas phase equilibrium partial pressure when polymer solutions containing different mass fractions of volatiles reached a saturated state.The effects of temperature,type of volatiles,and polymer viscosity on the gas phase equilibrium partial pressure and Henry’s law constant of the volatiles were investigated.The results indicate that,with the increase of temperature and polymer viscosity,the gas phase equilibrium partial pressure and Henry’s law constant of volatiles increase.As temperature increases,the solubility of gas in liquid decreases.The relationship between the Henry’s law constant and temperature is consistent with the Arrhenius law.In the PDMS-hexane system,the gas phase equilibrium partial pressure and Henry’s law constant of n-hexane are higher than those of cyclohexane.The obtained Henry’s law constants can be used as a reference for perfecting the devolatilization process and improving the devolatilization effect.展开更多
The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The me...The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The methodology of the analysis is based on the potential energy density series expansion by the monomer fraction density. To discover the important details and particular features of pair atomic interactions in noble gases, the preprocessed and generalized experimental data have been taken from the US National Institute of Standards and Technology (NIST) online database. In this work the temperature range for analysis of the dimers’ bonding parameters is extended as compared to previous author’s works due to accounting for the specific temperature dependence of the repulsions’ contribution to the potential energy. The found temperature dependences of the pair interaction bond energies signal about the hindered rotation of atoms in dimers near the triple point due to the lack of rotational symmetry of their electronic outer shells. The discovered mutually correlated anomalous temperature dependences of the pair bond energy and the constant volume heat capacity in gaseous Helium require a special investigation of this remarkable phenomenon.展开更多
The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air non...The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air nonequilibrium chemical reactions and the H_2-air combustion reactions. The program is validated by the air non-equilibrium flow at Mach number of 25.9 with the RAM C-II configuration and the shock-induced combustion flow at Mach number of 4.512 6 around a sphere,respectively. Furthermore,the mixed reacting flow with the Mach number of 10.0 with an opposing jet of hydrogen is numerically analyzed. The results show that the program is reliable,and the effects of chemical reactions engender in the decrease of peak temperature along characteristic lines,as well as on the surface. The production of water is augmented in the region with high ratio of oxygen to hydrogen and weakened in the area with low ratio of oxygen to hydrogen by the air chemical non-equilibrium effects.展开更多
We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section ofin the intermediate mass r...We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section ofin the intermediate mass region, the gluon fusion provides a dominant contribution to dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,No.21203220 and 21133011)China Postdoctoral Science Foundation(No.2014M551674)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302070C)the National Basic Research Program of China(973 Program,No.2011CB201404)
文摘The chemical equilibrium and reaction kinetic behavior in the synthesis of polyoxymethylene dimethyl ethers (DMMn) were investigated over sulfated titania in order to reveal the decisive factor controlling the reaction. The results showed that the molar ratio of adjacent DMMn products in equilibrium solution had the same value, which depended absolutely on the reaction temperature. Meanwhile, the reactions had the same DMMn products distributions under varied reaction conditions. The equilibrium constants of the related step-wise reactions for DMMn formation were equal, which were calculated based on the bulk compositions of the reaction solution. And thus, the selectivity to DMMn was mainly controlled by the chemical equilibrium, i.e., thermodynamic control. In brief, the present results provide some guidance for future synthesis of DMMn.
文摘Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal ti- tration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the differ- ent methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.
文摘A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.
文摘An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.
文摘By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth,M=N,P,As,Sb) crystals were calculated.The values calculated of dielectric constants agree with the experimental values.
基金This project is supported by National Natural Science Foundation of China(No. 50544025)Natural Science Foundation of High Education of Jiangsu Province, China (No. 05KJB460030)
文摘For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during quasi-steady state period, is introduced with the concept of non-equilibrium stationary state. The main idea is based on thermodynamic driving forces, which result in non-zero thermodynamic fluxes and lead to chemical reaction far away from thermodynamic equilibrium. There exists certain dynamic equilibrium relationship between rates of diffusion fluxes in liquid phase of reactants or products and the rate equation of chemical reaction when welding is in quasi-steady state. As result of this, a group of non-linear equations containing concentrations of all substances at interface of slag/liquid-metal may be established. Moreover the stability of this non-equilibrium stationary state is discussed using dissipative structure theory and it is concluded theoretically that this non-equilibrium stationary state for welding chemical reaction is of stability.
文摘In this paper, a third-order exponential time differencing scheme, named ETDRK3, was investigated for large time stepping in the computation of hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was used for the spatial discretization. The efficient implementation of the scheme with diagonalization of Jacobin matrix was established and carried out for the semi-cylindrical around flow. Current observations showed that the numerical results were in good agreement with those obtained by the classical explicit three-stage Runge-Kutta scheme (RK3) and implicit LU scheme. Efficiency assessments promised the effectiveness of the ETDRK3 scheme. The rationality of the application of this scheme was proved by its preferable accuracy and efficiency.
基金Project (2005CB6237) supported by the National Basic Research Program of China
文摘The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.
基金Supported by the National Natural Science Foundation of China (21076212,21076213,21146006)the National Basic Research Program of China (2009CB219904)Key Program in Science and Technology of Qinghai Province (2010-G-A4)
文摘A chemical model,based on Pitzer activity coefficient model,is developed with a speciation approach to describe the solubility and chemistry of nesquehonite in concentrated chloride solutions.The chemical equilibrium constants for nesquehonite and aqueous species,i.e.0 3 MgCO,3 MgHCO,and MgOH +,are precisely calculated as a function of temperature according to the Van't Hoff equation by use of standard Gibbs free energy,standard formation enthalpy and heat capacity.The most recent solubility data are regressed to obtain new Pitzer parameters with good agreement.The predictive ability of the new model is improved significantly in comparison with previous models.The behavior of speciation chemistry for nesquehonite in various chloride media is explained through this modeling work on the basis of the 2 3 Mg /CO bearing species distribution,activity coefficient and pH changes.
文摘A comprehensive investigation of heavy metal pollutants in Xiangjiang river was accomplished to evaluate their chemical stability through three different ways: (1) Chemical speciation by direct measurements; (2) Chemical equilibrium model simulation; (3) Sediment extraction experiments. All the results demonstrated that the directly bioavailable fraction was in a very limited amount. The metal bound to organic ligands, adsorbed particles and precipitated species presented a buffer for solution species. The majority of metals occured in the residues as solid particulates. It was inferred that the heavy metal pollutants in this aquatic system exhibited a high chemical stability. The critical limits of discharging load and pH values were suggested.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
文摘The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneities in fluids. The method is based on the series expansion of thermophysical values by powers of the monomer fraction density. Unlike the virial expansion by powers of the total density, the series expansion terms in this method directly reflect properties of the corresponding cluster fractions. The internal energy had been selected among thermophysical properties as the most informative for this method. The thermal analysis of its series expansion coefficients permits to estimate the temperature dependence of the pair bond parameters, the clusters’ bond energies and equilibrium constants, the structural transitions between dominating isomers of clusters. The application of method to different pure fluids, including noble and molecular gases with van der Waals and polar molecular interactions, brings unknown clusters’ characteristics for the fluids under investigation. The thermal analysis of the ordinary and heavy Water vapors points on no trivial isotopic effects. The unpredictable growth of the pair bond energy with temperature in Alkanes points on existence in hydrocarbons of some unknown molecular interaction forces in addition to dispersion forces.
文摘The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient were determined as K_(MgS)=6.76×10^(-5)and e_S^(Mg)=-9.1.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.
文摘The Fourier transform infrared spectra of the cluster anion[Cl2Fe2S2MoS2Cu(PPh3)2]- are measured between 550 and 90 cm(-1).The empirical assignments have been made for the vibration bands of main valence bonds.In order to verify the assignments of the bands and obtain the force constants the approximate normal coordinate analysis for the title anion has been carried out.It is found that the calculated frequencies are in good agreement with the observed ones.While Quantum-Chemical calculation is used to elucidate the chemical bonding characteristics for the title anion.
基金Polyolefin Elastomer Technology Development project(2020B-2619).
文摘The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexane and polydimethylsiloxane(PDMS)-hexane systems were studied,and the Henry’s law constant was obtained by measuring the gas phase equilibrium partial pressure when polymer solutions containing different mass fractions of volatiles reached a saturated state.The effects of temperature,type of volatiles,and polymer viscosity on the gas phase equilibrium partial pressure and Henry’s law constant of the volatiles were investigated.The results indicate that,with the increase of temperature and polymer viscosity,the gas phase equilibrium partial pressure and Henry’s law constant of volatiles increase.As temperature increases,the solubility of gas in liquid decreases.The relationship between the Henry’s law constant and temperature is consistent with the Arrhenius law.In the PDMS-hexane system,the gas phase equilibrium partial pressure and Henry’s law constant of n-hexane are higher than those of cyclohexane.The obtained Henry’s law constants can be used as a reference for perfecting the devolatilization process and improving the devolatilization effect.
文摘The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The methodology of the analysis is based on the potential energy density series expansion by the monomer fraction density. To discover the important details and particular features of pair atomic interactions in noble gases, the preprocessed and generalized experimental data have been taken from the US National Institute of Standards and Technology (NIST) online database. In this work the temperature range for analysis of the dimers’ bonding parameters is extended as compared to previous author’s works due to accounting for the specific temperature dependence of the repulsions’ contribution to the potential energy. The found temperature dependences of the pair interaction bond energies signal about the hindered rotation of atoms in dimers near the triple point due to the lack of rotational symmetry of their electronic outer shells. The discovered mutually correlated anomalous temperature dependences of the pair bond energy and the constant volume heat capacity in gaseous Helium require a special investigation of this remarkable phenomenon.
基金supported by the Fundamental Research Funds for the Central Universities (No. NZ2016101)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air nonequilibrium chemical reactions and the H_2-air combustion reactions. The program is validated by the air non-equilibrium flow at Mach number of 25.9 with the RAM C-II configuration and the shock-induced combustion flow at Mach number of 4.512 6 around a sphere,respectively. Furthermore,the mixed reacting flow with the Mach number of 10.0 with an opposing jet of hydrogen is numerically analyzed. The results show that the program is reliable,and the effects of chemical reactions engender in the decrease of peak temperature along characteristic lines,as well as on the surface. The production of water is augmented in the region with high ratio of oxygen to hydrogen and weakened in the area with low ratio of oxygen to hydrogen by the air chemical non-equilibrium effects.
基金CAS Knowledge Innovation Project No.KJCX2-N11National Natural Science Foundation of China No.10075071 and No.19975053+1 种基金Major State Basic Research Development Program in China under Contract No. G200077400 CAS Knowledge
文摘We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section ofin the intermediate mass region, the gluon fusion provides a dominant contribution to dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.