The alcoholysis mechanism of 1,2-thiazetidine-1,1-dioxide with methanol, in which the relatively stable product is sulfonate ester, has been investigated by quantum chemical method. Our calculations indicate the react...The alcoholysis mechanism of 1,2-thiazetidine-1,1-dioxide with methanol, in which the relatively stable product is sulfonate ester, has been investigated by quantum chemical method. Our calculations indicate the reaction for alcoholysis of 1,2-thiazetidine-1,1-dioxide proceeds via two possible mechanisms: concerted and stepwise. In the stepwise mechanism, two possible reaction pathways can be followed while only one possible reaction pathway can be followed in the concerted mechanism.展开更多
In order to improve the homogeneous distribution of the TiC particles and facilitate the TiC particles to distribute in the tungsten grain interiors,two kinds of TiCdoped tungsten precursors with a core-shell structur...In order to improve the homogeneous distribution of the TiC particles and facilitate the TiC particles to distribute in the tungsten grain interiors,two kinds of TiCdoped tungsten precursors with a core-shell structure were prepared by an improved wet chemical method at different reaction temperature conditions.Consequently,fine platelike precursor(200-400 nm)and flower-like precursor(approximately 1.25μm)are obtained.After reduction and sintering,the microstructures of the samples were characterized by scanning electron microscopy and transmission electron microscopy.In the sample sintered from the platelike precursor,TiC particles with sizes in the range of40-300 nm and an average size of approximately 80 nm were uniformly distributed in the tungsten matrix with a high share in the grain interiors.However,in the sample sintered from the flower-like precursor,the TiC particles with sizes in the range of 50-700 nm are significantly aggregated and non-uniformly distributed in the tungsten matrix.As a result,the sample sintered from the plate-like precursor achieves higher mechanical properties and a much narrower range of bending strength values than that sintered from the flower-like precursor.The average bending strength of the sample sintered from the plate-like precursor is 655 MPa,which is higher than that of the sample sintered from the flower-like precursor(524 MPa).Different reaction mechanisms and dispersing stabilities of the TiC particles at different temperature conditions should be accounted for the differences between the two samples.展开更多
Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by dec...Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by decreasing the precursor concentrations. The few-layer VSe_(2) nanosheets show the room-temperature ferromagnetism. The coercivity and magnetization reach 0.024 T and 0.036 mA·m^(2)·g^(-1) at room temperature. The chargedensity wave behavior is also confirmed in VSe_(2) by the hysteresis loops and zero-field-cooling curve. V_(1-x)Fe_(x)Se_(2) nanosheets can be obtained by doping Fe(acac)3 in the reaction process. The room-temperature coercivity and magnetization of V_(0.8)Fe_(0.2)Se_(2) nanosheets are 5 times higher than those of the pure VSe_(2) nanosheets without destroying the structures. The enhancement of magnetization is due to the coupling interaction of 3 d orbits between V and Fe atoms. Higher Fe concentration is beneficial to improve the coercivity, which is attributed to the formation of the second phase Fe3 Se4. This simple chemical preparation method can be extended to prepare the other 2 D materials.展开更多
The electronic structures of the species Ni(DMG)_2, (Ni(DMG)_2)^- and (Ni(DMG)_2)_(2-) have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction ...The electronic structures of the species Ni(DMG)_2, (Ni(DMG)_2)^- and (Ni(DMG)_2)_(2-) have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction of Ni(DMG)_2, one electron interacts with the d orbitals on the nickel atom, while in the further stage the second electron interacts with the p orbitals on the nitrogen atoms. It conforms with our electrochemical experimental studies which showed that not only Ni(Ⅱ) is reduced but also DMG is catalytically reduced during the reduction of Ni(DMG)_2.展开更多
We successfully synthesize four kinds of ZnO nano/microcrystals including dumbbell microrods, nanoflakes, nanoplates, and microrods by a simple wet chemical method. Growth duration is found to play a crucial role in t...We successfully synthesize four kinds of ZnO nano/microcrystals including dumbbell microrods, nanoflakes, nanoplates, and microrods by a simple wet chemical method. Growth duration is found to play a crucial role in the morphologies of these ZnO nano/microcrystallites. In addition, growth conditions are systematically studied as a function of precursor concentration and temperature. The structural and optical characteristics of the ZnO samples are further investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy.展开更多
The synthesis of magnetic spinel ferrites at the nanoscale is a field of intense study, because the meso- scopic properties enable their novel applications. Spinel nanoparticles have a promising role because of their ...The synthesis of magnetic spinel ferrites at the nanoscale is a field of intense study, because the meso- scopic properties enable their novel applications. Spinel nanoparticles have a promising role because of their extraordinary properties compared with those of micro and macro scale particles. Several colloidal chemical synthetic procedures have been developed to produce monodisperse nanoparticles of spinel let- rites and other materials using sol-gel, co-precipitation, hydrothermal, and microemulsion techniques. To improve the synthesis method and conditions, quality and productivity of these nanoparticles, understanding the effect of extrinsic (pH, temperature, and molecular concentration) and intrinsic parameters (site preferences, latent heat, lattice parameters, electronic configuration, and bonding energy) on the particle size during synthesis is crucial. In this review, we discuss the effect of the intrinsic parameters on particle size of spinel ferrites to provide an insight to control their particle size more precisely.展开更多
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 p...Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.展开更多
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studi...Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.展开更多
GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon ...GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.展开更多
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ...In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each c...To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each combination of the factors was repeated three times. The first factor was rice variety(Ciherang and Ciliwung) and the second factor was the cooking method(stovetop, boiling and steaming, and rice cooker). Results showed that Ciherang and Ciliwung varieties were classified into slender grain rice type with yellowred color. The amylose content of Ciherang was classified as moderate, while the amylose content of Ciliwung classified as low. The most abundant amino acid contained in Ciherang and Ciliwung varieties was glutamic acid. Statistical analysis showed that cooking method had significant effects on texture, lightness, chroma, hue and moisture content of cooked rice. Rice cooked with liwet method had the lowest texture value, lowest lightness value, highest chroma value, and highest moisture content.展开更多
A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the ...A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the UV-Vis absorption spectrometer, Ttransmission Electron Microscopy (TEM), Field-Emission Scanning Electron microscope (FESEM), and X-ray diffraction (XRD). The practical results exhibited the absorption spectrum of the prepared nanoparticles at (357 nm), it was found that there is a relationship between the positions of the optical absorption peak and the size of the silver nanoparticles. The analysis of TEM results showed the presence of nanoparticles in the range (20 nm). The analyzing of XRD results explained the crystal structure for silver nanoparticles. It is found a cubic unit cell have a lattice constants (a = 4.0855 <span style="white-space:nowrap;">Å</span>), with the Miller indices were (111), (002), (002), and (113).展开更多
Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2.6H2O] and hexamethylenete- t...Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2.6H2O] and hexamethylenete- traamine(C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydro- phobicity.展开更多
This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hyd...In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hydroxide and 80% acetic acid.The pure d-TGGGT obtained by chromatorgraphy on DEAE-Sephadex A-25 and Q-Sepharose FF could be hydrolyzed completely and confirmed by base ratio.展开更多
A simple chemical method was developed for inducing bioactivity on NiTi alloys (50 at. pct by Ni/Ti). A layer of calcium phosphate was deposited on the surface to improve biocompatibility of the alloy. NiTi alloys wer...A simple chemical method was developed for inducing bioactivity on NiTi alloys (50 at. pct by Ni/Ti). A layer of calcium phosphate was deposited on the surface to improve biocompatibility of the alloy. NiTi alloys were first etched in HNO3 aqueous solution, and then treated with boiling diluted NaOH solution. A rough surface was created and a thin TiO2 layer was formed on the surface. Pre-calcification was then introduced by immersing the treated NiTi alloys in supersaturated Na2HPO4 solution and supersaturated Ca(OH)2 solution in turn before calcification in simulated body fluid (SBF). A dense and uniform bonelike calcium phosphate (Ca-P) bioactive layer was formed on the surfaces of the specimen, which would improve their biocompatibility. Morphology and element analysis on NiTi surfaces during the treatments were investigated in detail by means of environment scanning electron microscopy (ESEM), energy dispersion X-ray spectroscopy (EDXS), and X-ray diffraction (XRD).展开更多
Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show ...Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show that the phosphorus atom exhibits sp 3 hybridization. The structures of the extractants are determined by the repulsion of the hydrocarbon groups. In the extractants that have two 2 ethyl hexyl groups, one 2 ethyl hexyl extends straight, and the other extends twistily. When the number of oxygen atom decreases, the negative charge of the phosphoryl oxygen atom increases, but the negative charge of oxygen atom and the positive charge of hydrogen of the hydroxyl group decreases, and the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO) increase. The energies of the occupied frontier orbitals are close to each other.展开更多
Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various...Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.展开更多
文摘The alcoholysis mechanism of 1,2-thiazetidine-1,1-dioxide with methanol, in which the relatively stable product is sulfonate ester, has been investigated by quantum chemical method. Our calculations indicate the reaction for alcoholysis of 1,2-thiazetidine-1,1-dioxide proceeds via two possible mechanisms: concerted and stepwise. In the stepwise mechanism, two possible reaction pathways can be followed while only one possible reaction pathway can be followed in the concerted mechanism.
基金financially supported by the ITER-National Magnetic Confinement Fusion Program(No.2014GB123000)。
文摘In order to improve the homogeneous distribution of the TiC particles and facilitate the TiC particles to distribute in the tungsten grain interiors,two kinds of TiCdoped tungsten precursors with a core-shell structure were prepared by an improved wet chemical method at different reaction temperature conditions.Consequently,fine platelike precursor(200-400 nm)and flower-like precursor(approximately 1.25μm)are obtained.After reduction and sintering,the microstructures of the samples were characterized by scanning electron microscopy and transmission electron microscopy.In the sample sintered from the platelike precursor,TiC particles with sizes in the range of40-300 nm and an average size of approximately 80 nm were uniformly distributed in the tungsten matrix with a high share in the grain interiors.However,in the sample sintered from the flower-like precursor,the TiC particles with sizes in the range of 50-700 nm are significantly aggregated and non-uniformly distributed in the tungsten matrix.As a result,the sample sintered from the plate-like precursor achieves higher mechanical properties and a much narrower range of bending strength values than that sintered from the flower-like precursor.The average bending strength of the sample sintered from the plate-like precursor is 655 MPa,which is higher than that of the sample sintered from the flower-like precursor(524 MPa).Different reaction mechanisms and dispersing stabilities of the TiC particles at different temperature conditions should be accounted for the differences between the two samples.
基金financially supported by the National Natural Science Foundation of China(Nos.51971122,51571135 and 51701106)the National Key R&D Program of China(No.2017YFB0405703)。
文摘Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by decreasing the precursor concentrations. The few-layer VSe_(2) nanosheets show the room-temperature ferromagnetism. The coercivity and magnetization reach 0.024 T and 0.036 mA·m^(2)·g^(-1) at room temperature. The chargedensity wave behavior is also confirmed in VSe_(2) by the hysteresis loops and zero-field-cooling curve. V_(1-x)Fe_(x)Se_(2) nanosheets can be obtained by doping Fe(acac)3 in the reaction process. The room-temperature coercivity and magnetization of V_(0.8)Fe_(0.2)Se_(2) nanosheets are 5 times higher than those of the pure VSe_(2) nanosheets without destroying the structures. The enhancement of magnetization is due to the coupling interaction of 3 d orbits between V and Fe atoms. Higher Fe concentration is beneficial to improve the coercivity, which is attributed to the formation of the second phase Fe3 Se4. This simple chemical preparation method can be extended to prepare the other 2 D materials.
基金Project supported by the National Natural Science Foundstion of China.
文摘The electronic structures of the species Ni(DMG)_2, (Ni(DMG)_2)^- and (Ni(DMG)_2)_(2-) have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction of Ni(DMG)_2, one electron interacts with the d orbitals on the nickel atom, while in the further stage the second electron interacts with the p orbitals on the nitrogen atoms. It conforms with our electrochemical experimental studies which showed that not only Ni(Ⅱ) is reduced but also DMG is catalytically reduced during the reduction of Ni(DMG)_2.
文摘We successfully synthesize four kinds of ZnO nano/microcrystals including dumbbell microrods, nanoflakes, nanoplates, and microrods by a simple wet chemical method. Growth duration is found to play a crucial role in the morphologies of these ZnO nano/microcrystallites. In addition, growth conditions are systematically studied as a function of precursor concentration and temperature. The structural and optical characteristics of the ZnO samples are further investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy.
文摘The synthesis of magnetic spinel ferrites at the nanoscale is a field of intense study, because the meso- scopic properties enable their novel applications. Spinel nanoparticles have a promising role because of their extraordinary properties compared with those of micro and macro scale particles. Several colloidal chemical synthetic procedures have been developed to produce monodisperse nanoparticles of spinel let- rites and other materials using sol-gel, co-precipitation, hydrothermal, and microemulsion techniques. To improve the synthesis method and conditions, quality and productivity of these nanoparticles, understanding the effect of extrinsic (pH, temperature, and molecular concentration) and intrinsic parameters (site preferences, latent heat, lattice parameters, electronic configuration, and bonding energy) on the particle size during synthesis is crucial. In this review, we discuss the effect of the intrinsic parameters on particle size of spinel ferrites to provide an insight to control their particle size more precisely.
基金Project supported by the International Cooperation of Science and Technology Ministry PRC (2005DFBA028)the National Natural Science Foundation of China (59925412)
文摘Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.
文摘Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.
文摘GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.
基金the R&D project, titled " Creating a Marine Clay Matrix with Incineration Bottom Ash (IBA) for Land Reclamation " (Wu et al., 2014), under the Innovation for Environmental Sustainability (IES) Fund from National Environment Agency (NEA) of Singapore (ETO/CF/3/1)
文摘In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by International Rice Research Institute (IRRI)Research Center of Sub-Optimal Land (PUR-PLSO) Universitas Sriwijaya
文摘To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each combination of the factors was repeated three times. The first factor was rice variety(Ciherang and Ciliwung) and the second factor was the cooking method(stovetop, boiling and steaming, and rice cooker). Results showed that Ciherang and Ciliwung varieties were classified into slender grain rice type with yellowred color. The amylose content of Ciherang was classified as moderate, while the amylose content of Ciliwung classified as low. The most abundant amino acid contained in Ciherang and Ciliwung varieties was glutamic acid. Statistical analysis showed that cooking method had significant effects on texture, lightness, chroma, hue and moisture content of cooked rice. Rice cooked with liwet method had the lowest texture value, lowest lightness value, highest chroma value, and highest moisture content.
文摘A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the UV-Vis absorption spectrometer, Ttransmission Electron Microscopy (TEM), Field-Emission Scanning Electron microscope (FESEM), and X-ray diffraction (XRD). The practical results exhibited the absorption spectrum of the prepared nanoparticles at (357 nm), it was found that there is a relationship between the positions of the optical absorption peak and the size of the silver nanoparticles. The analysis of TEM results showed the presence of nanoparticles in the range (20 nm). The analyzing of XRD results explained the crystal structure for silver nanoparticles. It is found a cubic unit cell have a lattice constants (a = 4.0855 <span style="white-space:nowrap;">Å</span>), with the Miller indices were (111), (002), (002), and (113).
基金Supported by the National Natural Science Foundation of China(Nos.20773014,20933001)
文摘Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2.6H2O] and hexamethylenete- traamine(C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydro- phobicity.
文摘This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
文摘In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hydroxide and 80% acetic acid.The pure d-TGGGT obtained by chromatorgraphy on DEAE-Sephadex A-25 and Q-Sepharose FF could be hydrolyzed completely and confirmed by base ratio.
基金This work was supported by the National Natural Science Foundation of China (59971032) by Foundation for University Key Teacher, the Ministry of Education (GG-805-10056-1603).
文摘A simple chemical method was developed for inducing bioactivity on NiTi alloys (50 at. pct by Ni/Ti). A layer of calcium phosphate was deposited on the surface to improve biocompatibility of the alloy. NiTi alloys were first etched in HNO3 aqueous solution, and then treated with boiling diluted NaOH solution. A rough surface was created and a thin TiO2 layer was formed on the surface. Pre-calcification was then introduced by immersing the treated NiTi alloys in supersaturated Na2HPO4 solution and supersaturated Ca(OH)2 solution in turn before calcification in simulated body fluid (SBF). A dense and uniform bonelike calcium phosphate (Ca-P) bioactive layer was formed on the surfaces of the specimen, which would improve their biocompatibility. Morphology and element analysis on NiTi surfaces during the treatments were investigated in detail by means of environment scanning electron microscopy (ESEM), energy dispersion X-ray spectroscopy (EDXS), and X-ray diffraction (XRD).
文摘Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show that the phosphorus atom exhibits sp 3 hybridization. The structures of the extractants are determined by the repulsion of the hydrocarbon groups. In the extractants that have two 2 ethyl hexyl groups, one 2 ethyl hexyl extends straight, and the other extends twistily. When the number of oxygen atom decreases, the negative charge of the phosphoryl oxygen atom increases, but the negative charge of oxygen atom and the positive charge of hydrogen of the hydroxyl group decreases, and the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO) increase. The energies of the occupied frontier orbitals are close to each other.
文摘Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.