期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive 被引量:9
1
作者 LEI Hong BU Naijing ZHANG Zefang CHEN Ruling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期276-281,共6页
Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their h... Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP. 展开更多
关键词 chemical mechanical polishing glass substrate α-alumina graft polymerization composite abrasive
下载PDF
Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls 被引量:6
2
作者 YUAN Ju-long, Lü Bing-hai, LIN Xü, JI Shi-ming, ZHANG Li-bin (Mechanical and Electronic Engineering College, Zhejiang University of Technology, Hangzhou 310014, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期63-64,共2页
Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fie... Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped by expensive diamond abrasive. The machining is inefficiency and the cost is high, but also lots of pits, scratch subsurface micro crazes and dislocations will be caused on the surface of the balls, the performance of the ball bearings would be declined seriously. In these year, a kind of new technology known as chemical mechanical polishing is introduced in the ultraprecision machining process of ceramic balls. In this technology, abrasives such as ZrO 2, CeO 2 whose hardness is close to or lower than the work material (Si 3N 4) are used to polishing the balls. In special slurry, these abrasives can chemo-mechanically react with the work material and environment (air or water) to generate softer material (SiO 2). And the resultants will be removed easily at 0.1 nm level. So the surface defects can be minimized, very smooth surface (Ra=4 nm) and fine sphericity (0.15~0.25 μm ) can be obtained, and the machining efficiency is also improved. The action mechanism of the abrasives in the chemical mechanical polishing process in finishing of silicon nitride ball will be introduced in this paper. 展开更多
关键词 silicon nitride ball chemical mechanical polishing ABRASIVES
下载PDF
Theoretical and experimental investigation of chemical mechanical polishing of W–Ni–Fe alloy 被引量:3
3
作者 Jiang Guo Xiaolin Shi +7 位作者 Chuanping Song Lin Niu Hailong Cui Xiaoguang Guo Zhen Tong Nan Yu Zhuji Jin Renke Kang 《International Journal of Extreme Manufacturing》 EI 2021年第2期125-137,共13页
Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attribu... Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attributed to differences in properties of two-phase microstructures. This paper presents a theoretical and experimental investigation on chemical mechanical polishing of W–Ni–Fe alloy. The mechanism of the boundary step generation is illustrated and a model of grain boundary step formation is proposed. The mechanism reveals the effects of mechanical and chemical actions in both surface roughness and material removal. The model was verified by the experiments and the results show that appropriately balancing the mechanical and chemical effects restrains the generation of boundary steps and leads to a fine surface quality with a high removal rate by citric acid-based slurry. 展开更多
关键词 chemical mechanical polishing W–Ni–Fe alloy grain boundary step modelling mechanism
下载PDF
A nano-scale mirror-like surface of Ti–6Al–4V attained by chemical mechanical polishing 被引量:1
4
作者 梁晨亮 刘卫丽 +3 位作者 李沙沙 孔慧 张泽芳 宋志棠 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期441-447,共7页
Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electromechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibi... Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electromechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs.Thus, we introduce the method of chemical mechanical polishing(CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti–6Al–4V(Ti64) in the CMP process, and optimize the composition of CMP slurry.Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy(XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti–6Al–4V. 展开更多
关键词 chemical mechanical polishing TITANIUM ELECTROchemical x-ray photoelectron spectroscopy(XPS)
下载PDF
Effect of Abrasive Concentration on Chemical Mechanical Polishing of Sapphire 被引量:1
5
作者 闫未霞 张泽芳 +2 位作者 郭晓慧 刘卫丽 宋志棠 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期181-184,共4页
Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show ... Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP. 展开更多
关键词 COF Effect of Abrasive Concentration on chemical Mechanical polishing of Sapphire CMP MRR
下载PDF
Mechanism of titanium-nitride chemical mechanical polishing
6
作者 Dao-Huan Feng Ruo-Bing Wang +4 位作者 Ao-Xue Xu Fan Xu Wei-Lei Wang Wei-Li Liu Zhi-Tang Song 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期549-556,共8页
During the preparation of the phase change memory,the deposition and chemical mechanical polishing(CMP)of titanium nitride(TiN)are indispensable.A new acidic slurry added with sodium hypochlorite(NaClO)as an oxidizer ... During the preparation of the phase change memory,the deposition and chemical mechanical polishing(CMP)of titanium nitride(TiN)are indispensable.A new acidic slurry added with sodium hypochlorite(NaClO)as an oxidizer is developed for the CMP of TiN film.It has achieved a material removal rate of 76 nm/min,a high selectivity between TiN film and silica(SiO_(2))films of 128:1,a selectivity between TiN film and tungsten film of 84:1 and a high surface quality.To understand the mechanism of TiN CMP process,x-ray photoelectron(XPS)spectroscope and potentiodynamic polarization measurement are performed.It is found that the mechanism of TiN CMP process is cyclic reaction polishing mechanism.In addition,both static corrosion rate and the inductively coupled plasma results indicate TiN would not be dissolved,which means that the mechanical removal process of oxide layer plays a decisive role in the material removal rate.Finally,the mechanism of TiN polishing process is given based on the analysis of surface potential and the description of blocking function. 展开更多
关键词 TIN chemical mechanical polishing MECHANISM
下载PDF
Iron trichloride as oxidizer in acid slurry for chemical mechanical polishing of Ge_2Sb_2Te_5
7
作者 闫未霞 王良咏 +2 位作者 张泽芳 刘卫丽 宋志棠 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期677-681,共5页
The effect of iron trichloride (FeC13) on chemical mechanical polishing (CMP) of Ge2Sb2Te5 (GST) film is inves- tigated in this paper. The polishing rate of GST increases from 38 nm/min to 144 nm/min when the Fe... The effect of iron trichloride (FeC13) on chemical mechanical polishing (CMP) of Ge2Sb2Te5 (GST) film is inves- tigated in this paper. The polishing rate of GST increases from 38 nm/min to 144 nm/min when the FeC13 concentration changes from 0.01 wt% to 0.15 wt%, which is much faster than 20 nm/min for the 1 wt% H2O2-based slurry. This polish- ing rate trends are inversely correlated with the contact angle data of FeCl3-based slurry on the GST film surface. Thus, it is hypothesized that the hydrophilicity of the GST film surface is associated with the polishing rate during CMP. Atomic force microscope (AFM) and optical microscope (OM) are used to characterize the surface quality after CMP. The chemical mechanism is studied by potentiodynamic measurements such as Ecorr and Icorr to analyze chemical reaction between FeCl3 and GST surface. Finally, it is verified that slurry with FeCl3 has no influence on the electrical property of the post-CMP GST film by the resistivity-temperature (RT) tests. 展开更多
关键词 chemical mechanical polishing iron trichloride Ge2Sb2Te5
下载PDF
Two material removal modes in chemical mechanical polishing:mechanical plowing vs.chemical bonding 被引量:1
8
作者 Yuan WU Liang JIANG +3 位作者 Wenhui LI Jiaxin ZHENG Yushan CHEN Linmao QIAN 《Friction》 SCIE EI CAS CSCD 2024年第5期897-905,共9页
With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).According... With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).Accordingly,the study aimed to classify the material removal mechanism.Based on the CMP and atomic force microscopy results,the six representative metals can be preliminarily classified into two groups,presumably due to different material removal modes.From the tribology perspective,the first group of Cu,Co,and Ni may mainly rely on the mechanical plowing effect.After adding H_(2)O_(2),corrosion can be first enhanced and then suppressed,affecting the surface mechanical strength.Consequently,the material removal rate(MRR)and the surface roughness increase and decrease.By comparison,the second group of Ta,Ru,and Ti may primarily depend on the chemical bonding effect.Adding H_(2)O_(2)can promote oxidation,increasing interfacial chemical bonds.Therefore,the MRR increases,and the surface roughness decreases and levels off.In addition,CMP can be regulated by tuning the synergistic effect of oxidation,complexation,and dissolution for mechanical plowing,while tuning the synergistic effect of oxidation and ionic strength for chemical bonding.The findings provide mechanistic insight into the material removal mechanism in CMP. 展开更多
关键词 chemical mechanical polishing corrosion wear material removal mode mechanical plowing chemical bonding
原文传递
Atomistic understanding of rough surface on the interfacial friction behavior during the chemical mechanical polishing process of diamond 被引量:1
9
作者 Song YUAN Xiaoguang GUO +2 位作者 Hao WANG Renke KANG Shang GAO 《Friction》 SCIE EI CAS CSCD 2024年第6期1119-1132,共14页
The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a sp... The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a special root mean square(RMS)value is constructed by multivariate Weierstrass–Mandelbrot(W–M)function and the rubbing process during that the chemical mechanical polishing(CMP)process of diamond is mimicked utilizing the reactive force field molecular dynamics(ReaxFF MD)simulation.It is found that the contact area A/A0 is positively related with the load,and the friction force F depends on the number of interfacial bridge bonds.Increasing the surface roughness will increase the friction force and friction coefficient.The model with low roughness and high lubrication has less friction force,and the presence of polishing liquid molecules can decrease the friction force and friction coefficient.The RMS value and the degree of damage show a functional relationship with the applied load and lubrication,i.e.,the RMS value decreases more under larger load and higher lubrication,and the diamond substrate occurs severer damage under larger load and lower lubrication.This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level. 展开更多
关键词 DIAMOND random roughness reactive force field molecular dynamics(ReaxFF MD) friction Weierstrass-Mandelbrot(W-M)function chemical mechanical polishing(CMP)
原文传递
Optimization of Polishing Parameters with Taguchi Method for LBO Crystal in CMP 被引量:4
10
作者 Jun Li Yongwei Zhu +2 位作者 Dunwen Zuo Yong Zhu Chuangtian Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期703-707,共5页
Chemical mechanical polishing (CMP) was used to polish Lithium triborate (LiB3O5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface ... Chemical mechanical polishing (CMP) was used to polish Lithium triborate (LiB3O5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface roughness are considered as criteria for the optimization. The polishing pressure, the abrasive concentration and the table velocity are important parameters which influence MRR and surface roughness in CMP of LBO crystal. Experiment results indicate that for MRR the polishing pressure is the most significant polishing parameter followed by table velocity; while for the surface roughness, the abrasive concentration is the most important one. For high MRR in CMP of LBO ctystal the optimal conditions are: pressure 620 g/cm^2, concentration 5.0 wt pct, and velocity 60 r/min, respectively. For the best surface roughness the optimal conditions are: pressure 416 g/cm^2, concentration 5.0 wt pct, and velocity 40 r/min, respectively. The contributions of individual parameters for MRR and surface roughness were obtained. 展开更多
关键词 chemical mechanical polishing (CMP) Lithium triborate (LBO) crystal Material removal rate (MRR) Surface roughness Taguchi method
下载PDF
Defect-free surface of quartz glass polished in elastic mode by chemical impact reaction 被引量:1
11
作者 彭文强 关朝亮 李圣怡 《Journal of Central South University》 SCIE EI CAS 2014年第12期4438-4444,共7页
Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom c... Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and microroughness(Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce — O — Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated. 展开更多
关键词 defect-free surface chemical impact reaction nanoparticle jet polishing elastic mode
下载PDF
Origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid
12
作者 王良咏 刘波 +4 位作者 宋志棠 刘卫丽 封松林 黄丕成 S.V Babu 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期497-504,共8页
We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with pi... We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre- and the post-polished wafer surfaces as well as the pre- and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed. 展开更多
关键词 chemical mechanical polishing CERIA oxide over nitride selectivity ORIGIN
下载PDF
Chemically-induced active micro-nano bubbles assisting chemical mechanical polishing:Modeling and experiments 被引量:2
13
作者 Lei XU Kihong PARK +5 位作者 Hong LEI Pengzhan LIU Eungchul KIM Yeongkwang CHO Taesung KIM Chuandong CHEN 《Friction》 SCIE EI CAS CSCD 2023年第9期1624-1640,共17页
The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishi... The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishing process was investigated in detail.Based on the mixed lubrication or thin film lubrication,bubble-wafer plastic deformation,spherical indentation theory,Johnson-Cook(J-C)constitutive model,and the assumption of periodic distribution of pad asperities,a new model suitable for micro-nano bubble auxiliary material removal in CMP was developed.The model integrates many parameters,including the reactant concentration,wafer hardness,polishing pad roughness,strain hardening,strain rate,micro-jet radius,and bubble radius.The model reflects the influence of active bubbles on material removal.A new and simple chemical reaction method was used to form a controllable number of micro-nano bubbles during the polishing process to assist in polishing silicon oxide wafers.The experimental results show that micro-nano bubbles can greatly increase the material removal rate(MRR)by about 400%and result in a lower surface roughness of 0.17 nm.The experimental results are consistent with the established model.In the process of verifying the model,a better understanding of the material removal mechanism involved in micro-nano bubbles in CMP was obtained. 展开更多
关键词 micro-nano bubbles mixed lubrication material removal mechanism chemical mechanical polishing(CMP) MODELING
原文传递
Novel model of material removal rate on ultrasonic-assisted chemical mechanical polishing for sapphire 被引量:2
14
作者 Mufang ZHOU Min ZHONG Wenhu XU 《Friction》 SCIE EI CAS CSCD 2023年第11期2073-2090,共18页
Ultrasonic-assisted chemical mechanical polishing(UA-CMP)can greatly improve the sapphire material removal and surface quality,but its polishing mechanism is still unclear.This paper proposed a novel model of material... Ultrasonic-assisted chemical mechanical polishing(UA-CMP)can greatly improve the sapphire material removal and surface quality,but its polishing mechanism is still unclear.This paper proposed a novel model of material removal rate(MRR)to explore the mechanism of sapphire UA-CMP.It contains two modes,namely two-body wear and abrasive-impact.Furthermore,the atomic force microscopy(AFM)in-situ study,computational fluid dynamics(CFD)simulation,and polishing experiments were conducted to verify the model and reveal the polishing mechanism.In the AFM in-situ studies,the tip scratched the reaction layer on the sapphire surface.The pit with a 0.22 nm depth is the evidence of two-body wear.The CFD simulation showed that abrasives could be driven by the ultrasonic vibration to impact the sapphire surface at high frequencies.The maximum total velocity and the air volume fraction(AVF)in the central area increased from 0.26 to 0.55 m/s and 20%to 49%,respectively,with the rising amplitudes of 1–3μm.However,the maximum total velocity rose slightly from 0.33 to 0.42 m/s,and the AVF was nearly unchanged under 40–80 r/min.It indicated that the ultrasonic energy has great effects on the abrasive-impact mode.The UA-CMP experimental results exhibited that there was 63.7%improvement in MRR when the polishing velocities rose from 40 to 80 r/min.The roughness of the polished sapphire surface was R_(a)=0.07 nm.It identified that the higher speed achieved greater MRR mainly through the two-body wear mode.This study is beneficial to further understanding the UA-CMP mechanism and promoting the development of UA-CMP technology. 展开更多
关键词 SAPPHIRE ultrasonic-assisted chemical mechanical polishing(UA-CMP) material removal rate(MRR)predictive model atomic force microscopy(AFM)in-situ studies computational fluid dynamics(CFD)
原文传递
Preparation of CeO_(2) abrasives by reducing atmosphere-assisted molten salt method for enhancing their chemical mechanical polishing performance on SiO_(2)substrates 被引量:1
15
作者 Ning Xu Jiahui Ma +2 位作者 Qi Liu Yuxin Luo Yongping Pu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1627-1635,I0006,共10页
Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing... Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface. 展开更多
关键词 CeO_(2) chemical mechanical polishing(CMP) Reducing atmosphere Material removal rate(MRR) Molten salt method Rare earths
原文传递
Influence of sample preparation on nanoindentation results of twinninginduced plasticity steel 被引量:3
16
作者 Jiali Zhang Stefan Zaefferer 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期877-887,共11页
Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because o... Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because of the complex stress-strain field and the small scale of the deformation under the nanoindenter,the results can be easily influenced by artifacts induced during sample preparation.In this work,a systematic study was conducted to better understand the influence of sample preparation methods on the nanoindentation results of ductile metals.All experiments were conducted on a steel(Fe-22Mn-0.65C,wt%)with twinning-induced plasticity(TWIP),which was selected for its large grain size and sensitivity to different surface preparation methods.By grouping the results obtained from each nanoindent,chemical polishing was found to be the best sample preparation method with respect to the resulting mechanical properties of the material.In contrast,the presence of a deformation layer left by mechanical polishing and surface damage induced by focused ion beam(FIB)scanning were confirmed by the dislocation-nucleation-induced pop-in events of nanoindentation. 展开更多
关键词 TWIP steels NANOINDENTATION mechanical polishing chemical polishing POP-IN
下载PDF
Chemical mechanical polishing: Theory and experiment 被引量:25
17
作者 Dewen ZHAO Xinchun LU 《Friction》 SCIE EI CAS 2013年第4期306-326,共21页
For several decades,chemical mechanical polishing(CMP)has been the most widely used planarization method in integrated circuits manufacturing.The final polishing results are affected by many factors related to the car... For several decades,chemical mechanical polishing(CMP)has been the most widely used planarization method in integrated circuits manufacturing.The final polishing results are affected by many factors related to the carrier structure,the polishing pad,the slurry,and the process parameters.As both chemical and mechanical actions affect the effectiveness of CMP,and these actions are themselves affected by many factors,the CMP mechanism is complex and has been a hot research area for many years.This review provides a basic description of the development,challenges,and key technologies associated with CMP.We summarize theoretical CMP models from the perspectives of kinematics,empirical,its mechanism(from the viewpoint of the atomic scale,particle scale,and wafer scale),and its chemical-mechanical synergy.Experimental approaches to the CMP mechanism of material removal and planarization are further discussed from the viewpoint of the particle wear effect,chemical-mechanical synergy,and wafer-pad interfacial interaction. 展开更多
关键词 chemical mechanical polishing(CMP) CMP model planarization mechanism wafer-pad interaction UNIFORMITY
原文传递
Mechanical model of nanoparticles for material removal in chemical mechanical polishing process 被引量:10
18
作者 Hao CHEN Dan GUO +1 位作者 Guoxin XIE Guoshun PAN 《Friction》 CSCD 2016年第2期153-164,共12页
Chemical mechanical polishing (CMP) is the most effective method for surface planarization in the semiconductor industry. Nanoparticles are significant for material removal and ultra-smooth surface formation. This res... Chemical mechanical polishing (CMP) is the most effective method for surface planarization in the semiconductor industry. Nanoparticles are significant for material removal and ultra-smooth surface formation. This research investigates the mechanical effects of the material removal in the CMP process. The various contact states of pad, individual particle, and wafer caused by the variations of working conditions and material properties are analyzed. Three different mechanical models for the material removal in the CMP process, i.e., abrasive wear, adhesive wear, and erosive wear are investigated, with a focus on the comparison of the results for different models. The conclusions and methods obtained could potentially contribute to the understanding and evaluation of the CMP process in further work. 展开更多
关键词 NANOPARTICLE chemical mechanical polishing (CMP) contact theory material removal
原文传递
Intermolecular and surface forces in atomic-scale manufacturing 被引量:4
19
作者 Xin Hou Jingyang Li +1 位作者 Yuanzhe Li Yu Tian 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期32-48,共17页
Atomic and close-to-atomic scale manufacturing(ACSM)aims to provide techniques for manufacturing in various fields,such as circuit manufacturing,high energy physics equipment,and medical devices and materials.The real... Atomic and close-to-atomic scale manufacturing(ACSM)aims to provide techniques for manufacturing in various fields,such as circuit manufacturing,high energy physics equipment,and medical devices and materials.The realization of atomic scale material manipulation depending on the theoretical system of classical mechanics faces great challenges.Understanding and using intermolecular and surface forces are the basis for better designing of ACSM.Transformation of atoms based on scanning tunneling microscopy or atomic force microscopy(AFM)is an essential process to regulate intermolecular interactions.Self-assemble process is a thermodynamic process involving complex intermolecular forces.The competition of these interaction determines structure assembly and packing geometry.For typical nanomachining processes including AFM nanomachining and chemical mechanical polishing,the coupling of chemistry and stress(tribochemistry)assists in the removal of surface atoms.Furthermore,based on the principle of triboelectrochemistry,we expect a further reduction of the potential barrier,and a potential application in high-efficiency atoms removal and fabricating functional coating.Future fundamental research is proposed for achieving high-efficiency and high-accuracy manufacturing with the aiding of external field.This review highlights the significant contribution of intermolecular and surface forces to ACSM,and may accelerate its progress in the in-depth investigation of fundamentals. 展开更多
关键词 intermolecular and surface forces atomic-scale manufacturing transformation of atoms AFM nanomachining chemical mechanical polishing triboelectrochemistry
下载PDF
Contact stress non-uniformity of wafer surface for multi-zone chemical mechanical polishing process 被引量:3
20
作者 WANG TongQing LU XinChun +1 位作者 ZHAO DeWen HE YongYong 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第8期1974-1979,共6页
A finite element analysis(FEA)model is developed for the chemical-mechanical polishing(CMP)process on the basis of a 12-in five-zone polishing head.The proposed FEA model shows that the contact stress non-uniformity i... A finite element analysis(FEA)model is developed for the chemical-mechanical polishing(CMP)process on the basis of a 12-in five-zone polishing head.The proposed FEA model shows that the contact stress non-uniformity is less dependent on the material property of the membrane and the geometry of the retaining ring.The larger the elastic modulus of the pad,the larger contact stress non-uniformity of the wafer.The applied loads on retaining ring and zone of the polishing head significantly affect the contact stress distribution.The stress adjustment ability of a zone depends on its position.In particular,the inner-side zone has a high stress adjustment ability,whereas the outer-side zone has a low stress adjustment ability.The predicted results by the model are shown to be consistent with the experimental data.Analysis results have revealed some insights regarding the performance of the multi-zone CMP. 展开更多
关键词 chemical mechanical polishing contact stress NON-UNIFORMITY multi-zone polishing head retaining ring
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部