Introduction:Chemokine-like factor 1(CKLF1)is a chemokine that is overexpressed in several diseases.Our previousfindings revealed a significant increase in CKLF1 expression in the ischemic brain,suggesting its potential...Introduction:Chemokine-like factor 1(CKLF1)is a chemokine that is overexpressed in several diseases.Our previousfindings revealed a significant increase in CKLF1 expression in the ischemic brain,suggesting its potential as a therapeutic target for ischemic stroke.Methods:In this study,we examined the expression dynamics of CKLF1 in both in vivo and in vitro models of ischemic cardiac injury.Myocardial infarction(MI)was induced in vivo by ligation of the left anterior descending artery(LAD)of the rat heart.The levels of CKLF1,Creatine Kinase MB Isoenzyme(CK-MB),and Lactate dehydrogenase(LDH)in the serum were detected using Enzyme-linked immunosorbent assay(ELISA).The expression of CKLF1 in the infarcted area was detected by immunohistochemistry,immunofluorescence,quantitative PCR(qPCR),and Western blotting(WB).H9C2 and AC16 cardiomyocytes cultured in vitro were subjected to oxygen and glucose deprivation(OGD).LDH was used to detect cell damage,and CKLF1 expression was detected by qPCR and WB.Results:CKLF1 mRNA and protein expression were significantly increased in h9c2 cells at 1.5 h and in AC16 cells at 4 h after OGD.The serum CK-MB in rats increased significantly on thefirst day after infarction,while the LDH concentration increased significantly on the third day after infarction.CKLF1 blood levels significantly increased on thefirst day following MI in rats.CKLF1 expression notably increased in the infarct area on days 1,3,and 7 post-MI.In MI tissue,CKLF1 colocalizes with cardiomyocytes,macrophages,and neutrophils.Conclusion:CKLF1 was substantially expressed during myocardial ischemia injury both in vivo and in vitro and was colocalized with macrophages and neutrophils,indicating that CKLF1 is expected to be a biomarker and a drug target for the treatment of myocardial infarction.展开更多
OBJECTIVE To investigate the role of chemokine-like factor 1(CKLF1),a novel C-C chemokine,on brain-blood barrier(BBB)integrity in rat focal cerebral ischemia and reperfusion model.METHODS Antibodies against CKLF1 was ...OBJECTIVE To investigate the role of chemokine-like factor 1(CKLF1),a novel C-C chemokine,on brain-blood barrier(BBB)integrity in rat focal cerebral ischemia and reperfusion model.METHODS Antibodies against CKLF1 was applied to the rightcerebral ventricle immediately after transient middle cerebral artery occlusion.Brain water content,Evans blue leakage and the expression of aquaporin-4(AQP-4),matrix metalloproteinase-9(MMP-9),zonula occludens-1(ZO-1)and occludin were measured.RESULTS After treatment with antiCKLF1 antibody,brain water content and Evans blue leakage in ipsilateral hemisphere were decreased in a dose-dependent manner at 24 h after reperfusion,but not changed in contralateral hemisphere.Anti-CKLF1 antibody reduced the expression of AQP-4 and MMP-9,and upregulated the expression of ZO-1 and Occludin.These results suggest that CKLF1 is involved in BBB disruption after reperfusion.CONCLUSION Inhibition of CKLF1 protects against cerebral ischemia by maintaining BBB integrity,possibly via inhibiting the expression of AQP-4 and MMP-9,and increasing the expression of tight junction protein.展开更多
Chemokine-like factor 1(CKLF1) is a newly cloned chemotactic cytokine with CCR4 being its functional receptor. Recent evidence demonstrates a role of CKLF1 in arthritis. The aim of this study was to quantify the exp...Chemokine-like factor 1(CKLF1) is a newly cloned chemotactic cytokine with CCR4 being its functional receptor. Recent evidence demonstrates a role of CKLF1 in arthritis. The aim of this study was to quantify the expression of CKLF1 as well as assess the correlation between CKLF1 and plasma acute-phase markers. Synovium was obtained from 16 osteoarthritis(OA), 15 rheumatoid arthritis(RA) and 10 ankylosing spondylitis(AS) patients undergoing total joint arthroplasty, with other 11 patients treated for meniscal tears during sport accidents serving as normal controls. Levels of CKLF1 and CCR4 m RNA were detected by q RT-PCR, and the expression of CKLF1 was investigated by immunohistochemistry staining, subsequently analyzed with semiquantitative scores. Plasma acute-phase markers of inflammation were determined by ELISA. CKLF1 was found with a particularly up-regulated expression in synovim from AS and RA patients, and CCR4 m RNA levels increased in RA patients, not in OA or AS patients. Elevated levels of plasma markers of inflammation including CRP, ESR and Ddimer were observed in RA. Further, significantly positive correlations between relative expression levels of CKLF1 and CRP/ESR in RA patients and a positive correlation between CKLF1 and ESR in AS patients were found. There was no detectable correlation between CKLF1 and plasma D-dimer. This study confirms an increased but different level of CKLF1 in RA, OA and AS patients, all significantly higher than that in controls. Additionally, the significant positive correlations between CKLF1 levels and CRP/ESR in RA and between CKLF1 and ESR suggest that CKLF1 might contribute to the inflammation state and clinical symptoms in these rheumatic diseases. Further studies are required to investigate the utility of targeting specific CKLF1 for symptom control or disease modification in RA and AS.展开更多
Background Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family c...Background Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family chemokines Recombinant CKLF1 exhibits chemotactic activity on leucocytes and stimulates proliferation of murine skeletal muscle cells We questioned whether CKLF1 could be involved in the pathogenesis of inflammation and proliferation in the lung Therefore we used efficient in vivo gene delivery method to investigate the biological effect of CKLF1 in the murine lung Methods CKLF1-expressing plasmid, pCDI-CKLF1, was constructed and injected into the skeletal muscles followed by electroporation Lung tissues were obtained at the end of week 1,2,3 and 4 respectively after injection The pathological changes in the lungs were observed by light microscope Results A single intramuscular injection of CKLF1 plasmid DNA into BALB/c mice caused dramatic pathological changes in the lungs of treated mice These changes included peribronchial leukocyte infiltration, epithelial shedding, collagen deposition, proliferation of bronchial smooth muscle cells and fibrosis of the lung Conclusions The sustained morphological abnormalities of the bronchial and bronchiolar wall, the acute pneumonitis and interstitial pulmonary fibrosis induced by CKLF1 were similar to phenomena observed in chronic persistent asthma, acute respiratory distress syndrome and severe acute respiratory syndrome These data suggest that CKLF1 may play an important role in the pathogenesis of these important diseases and the study also implies that gene electro-transfer in vivo could serve as a valuable approach for evaluating the function of a novel gene in animals展开更多
BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.S...BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.展开更多
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ...Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player le...Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.展开更多
Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischem...Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischemia,is because of its ability to alleviate cardiac dysfunction.The oxygen-responsive subunit,HIF1α,plays a crucial role in this process,as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival,angiogenesis,and metabolism.Furthermore,HIF1αexpression induced reperfusion in the ischemic skeletal muscle,and hypoxic skin wounds in diabetic animal models showed reduced HIF1αexpression.Increased expression of HIF1αhas been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction.Genetic variations in HIF1αhave also been found to correlate with altered responses to ischemic cardiovascular disease.In addition,a link has been established between the circadian rhythm and hypoxic molecular signaling pathways,with HIF1αfunctioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light.This editorial analyzes the relationship between HIF1αand the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia.Understanding the changes in molecular signaling pathways associated with diseases,specifically cardiovascular diseases,provides the opportunity for innovative therapeutic interventions,especially in low-oxygen environments such as myocardial infarction.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
基金This work was supported by the National Natural Science Foundation of China(81873026,82074044,81900488,and 81730096)the Beijing Natural Science Foundation(7192135)+1 种基金the Health and Family Planning Commission of Hunan Province(202104010694)the Natural Science Foundation of Hunan Province(2022JJ80028,2023JJ60369).
文摘Introduction:Chemokine-like factor 1(CKLF1)is a chemokine that is overexpressed in several diseases.Our previousfindings revealed a significant increase in CKLF1 expression in the ischemic brain,suggesting its potential as a therapeutic target for ischemic stroke.Methods:In this study,we examined the expression dynamics of CKLF1 in both in vivo and in vitro models of ischemic cardiac injury.Myocardial infarction(MI)was induced in vivo by ligation of the left anterior descending artery(LAD)of the rat heart.The levels of CKLF1,Creatine Kinase MB Isoenzyme(CK-MB),and Lactate dehydrogenase(LDH)in the serum were detected using Enzyme-linked immunosorbent assay(ELISA).The expression of CKLF1 in the infarcted area was detected by immunohistochemistry,immunofluorescence,quantitative PCR(qPCR),and Western blotting(WB).H9C2 and AC16 cardiomyocytes cultured in vitro were subjected to oxygen and glucose deprivation(OGD).LDH was used to detect cell damage,and CKLF1 expression was detected by qPCR and WB.Results:CKLF1 mRNA and protein expression were significantly increased in h9c2 cells at 1.5 h and in AC16 cells at 4 h after OGD.The serum CK-MB in rats increased significantly on thefirst day after infarction,while the LDH concentration increased significantly on the third day after infarction.CKLF1 blood levels significantly increased on thefirst day following MI in rats.CKLF1 expression notably increased in the infarct area on days 1,3,and 7 post-MI.In MI tissue,CKLF1 colocalizes with cardiomyocytes,macrophages,and neutrophils.Conclusion:CKLF1 was substantially expressed during myocardial ischemia injury both in vivo and in vitro and was colocalized with macrophages and neutrophils,indicating that CKLF1 is expected to be a biomarker and a drug target for the treatment of myocardial infarction.
基金The project supported by National Natural Science Foundation of China(81302760)the Chinese Postdoctoral Science Foundation Project(2013M542510)
文摘OBJECTIVE To investigate the role of chemokine-like factor 1(CKLF1),a novel C-C chemokine,on brain-blood barrier(BBB)integrity in rat focal cerebral ischemia and reperfusion model.METHODS Antibodies against CKLF1 was applied to the rightcerebral ventricle immediately after transient middle cerebral artery occlusion.Brain water content,Evans blue leakage and the expression of aquaporin-4(AQP-4),matrix metalloproteinase-9(MMP-9),zonula occludens-1(ZO-1)and occludin were measured.RESULTS After treatment with antiCKLF1 antibody,brain water content and Evans blue leakage in ipsilateral hemisphere were decreased in a dose-dependent manner at 24 h after reperfusion,but not changed in contralateral hemisphere.Anti-CKLF1 antibody reduced the expression of AQP-4 and MMP-9,and upregulated the expression of ZO-1 and Occludin.These results suggest that CKLF1 is involved in BBB disruption after reperfusion.CONCLUSION Inhibition of CKLF1 protects against cerebral ischemia by maintaining BBB integrity,possibly via inhibiting the expression of AQP-4 and MMP-9,and increasing the expression of tight junction protein.
基金supported by National Natural Science Foundation of China(No.81441056 and 81541134)
文摘Chemokine-like factor 1(CKLF1) is a newly cloned chemotactic cytokine with CCR4 being its functional receptor. Recent evidence demonstrates a role of CKLF1 in arthritis. The aim of this study was to quantify the expression of CKLF1 as well as assess the correlation between CKLF1 and plasma acute-phase markers. Synovium was obtained from 16 osteoarthritis(OA), 15 rheumatoid arthritis(RA) and 10 ankylosing spondylitis(AS) patients undergoing total joint arthroplasty, with other 11 patients treated for meniscal tears during sport accidents serving as normal controls. Levels of CKLF1 and CCR4 m RNA were detected by q RT-PCR, and the expression of CKLF1 was investigated by immunohistochemistry staining, subsequently analyzed with semiquantitative scores. Plasma acute-phase markers of inflammation were determined by ELISA. CKLF1 was found with a particularly up-regulated expression in synovim from AS and RA patients, and CCR4 m RNA levels increased in RA patients, not in OA or AS patients. Elevated levels of plasma markers of inflammation including CRP, ESR and Ddimer were observed in RA. Further, significantly positive correlations between relative expression levels of CKLF1 and CRP/ESR in RA patients and a positive correlation between CKLF1 and ESR in AS patients were found. There was no detectable correlation between CKLF1 and plasma D-dimer. This study confirms an increased but different level of CKLF1 in RA, OA and AS patients, all significantly higher than that in controls. Additionally, the significant positive correlations between CKLF1 levels and CRP/ESR in RA and between CKLF1 and ESR suggest that CKLF1 might contribute to the inflammation state and clinical symptoms in these rheumatic diseases. Further studies are required to investigate the utility of targeting specific CKLF1 for symptom control or disease modification in RA and AS.
基金ThisworkwassupportedbythegrantsfromtheGuangdongNaturalScienceFoundationKeyProgram (No 0 20741),theNationalNaturalScienceFoundationofChina (No 3 0 3 70 62 2),theNationalHighTechnologyResearchandDevelopmentProgram (10 2 0 8070499),andtheSARSResearchFoundat
文摘Background Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family chemokines Recombinant CKLF1 exhibits chemotactic activity on leucocytes and stimulates proliferation of murine skeletal muscle cells We questioned whether CKLF1 could be involved in the pathogenesis of inflammation and proliferation in the lung Therefore we used efficient in vivo gene delivery method to investigate the biological effect of CKLF1 in the murine lung Methods CKLF1-expressing plasmid, pCDI-CKLF1, was constructed and injected into the skeletal muscles followed by electroporation Lung tissues were obtained at the end of week 1,2,3 and 4 respectively after injection The pathological changes in the lungs were observed by light microscope Results A single intramuscular injection of CKLF1 plasmid DNA into BALB/c mice caused dramatic pathological changes in the lungs of treated mice These changes included peribronchial leukocyte infiltration, epithelial shedding, collagen deposition, proliferation of bronchial smooth muscle cells and fibrosis of the lung Conclusions The sustained morphological abnormalities of the bronchial and bronchiolar wall, the acute pneumonitis and interstitial pulmonary fibrosis induced by CKLF1 were similar to phenomena observed in chronic persistent asthma, acute respiratory distress syndrome and severe acute respiratory syndrome These data suggest that CKLF1 may play an important role in the pathogenesis of these important diseases and the study also implies that gene electro-transfer in vivo could serve as a valuable approach for evaluating the function of a novel gene in animals
基金Supported by Natural Science Foundation of Guangdong Province,No.2022A1515012346.
文摘BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.
基金supported by the Community Development Office of Hunan Provincial Science and Technology DepartmentChina,Nos.2020SK53613(to DH),21JJ31006(to DH)the Fundamental Research Funds of Central South University,Nos.CX20220375(to TX),2023zzts215(to MZ)。
文摘Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.
文摘Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.
基金Supported by Croatian Ministry of Science and Education,Josip Juraj Strossmayer University of Osijek,Faculty of Dental Medicine and Health,Osijek,Croatia,No.IP7-FDMZ-2023West-Siberian Science and Education Center,Government of Tyumen District,Decree of 20.11.2020,No.928-rpMinistry of Science and Higher Education,No.FMEN 2022-0009.
文摘Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischemia,is because of its ability to alleviate cardiac dysfunction.The oxygen-responsive subunit,HIF1α,plays a crucial role in this process,as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival,angiogenesis,and metabolism.Furthermore,HIF1αexpression induced reperfusion in the ischemic skeletal muscle,and hypoxic skin wounds in diabetic animal models showed reduced HIF1αexpression.Increased expression of HIF1αhas been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction.Genetic variations in HIF1αhave also been found to correlate with altered responses to ischemic cardiovascular disease.In addition,a link has been established between the circadian rhythm and hypoxic molecular signaling pathways,with HIF1αfunctioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light.This editorial analyzes the relationship between HIF1αand the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia.Understanding the changes in molecular signaling pathways associated with diseases,specifically cardiovascular diseases,provides the opportunity for innovative therapeutic interventions,especially in low-oxygen environments such as myocardial infarction.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.