This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to cr...A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.展开更多
In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this...In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p...According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.展开更多
The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activ...The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activity and igneous rocks formed during the activity show in two aspects. A) The contact surface of igneous rocks and the surrounding sedimentary rocks, like a vertical unconformity surface, formed the conduit of petroleum migration. Petroleum would accumulate once it encountered a trap in which the reservoir had fine porosity and permeability. B) It formed a trap barriered by igneous rocks, or changed or cut the original trap. In addition, volcanic rocks are a kind of potential reservoir, there are many such examples in the world, and oil also shows in the Permian igneous rocks in well Zhong-1 on Tazhong uplift. Petroleum accumulation associated with volcanic activity will be a new exploring field in the Tarim basin.展开更多
Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture...Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.展开更多
以中国南海西部某油田为例,综合考察了生产水中悬浮颗粒、油、化学离子等因素对油田储层岩心堵塞的影响。结果表明,注入水驱替体积越多,级别越低的岩心渗透率伤害程度越高。随着岩心级别的增加,化学堵塞对岩心的伤害程度逐级递减,100 m ...以中国南海西部某油田为例,综合考察了生产水中悬浮颗粒、油、化学离子等因素对油田储层岩心堵塞的影响。结果表明,注入水驱替体积越多,级别越低的岩心渗透率伤害程度越高。随着岩心级别的增加,化学堵塞对岩心的伤害程度逐级递减,100 m D以下级别的岩心伤害率均超过20%。10~50 mD、50~100 mD、100~300 mD三种级别的岩心在不同平台中物理因素对岩心堵塞贡献分别是化学因素贡献占比的6.45、14.89、6.67、3.15倍。两块相同级别的天然岩心与人造岩心在经过驱替后渗透率保留率相差不大,说明了注入流体与岩石配伍性良好,但长期水驱对岩心(尤其是低渗岩心)的伤害较大。展开更多
Because the oilfields in eastern China are in the very high water cut development stage, accurate forecast of oilfield development indices is important for exploiting the oilfields efficiently. Regarding the problems ...Because the oilfields in eastern China are in the very high water cut development stage, accurate forecast of oilfield development indices is important for exploiting the oilfields efficiently. Regarding the problems of the small number of samples collected for oilfield development indices, a new support vector regression prediction method for development indices is proposed in this paper. This method uses the principle of functional simulation to determine the input-output of a support vector machine prediction system based on historical oilfield development data. It chooses the kernel function of the support vector machine by analyzing time series characteristics of the development index; trains and tests the support vector machine network with historical data to construct the support vector regression prediction model of oilfield development indices; and predicts the development index. The case study shows that the proposed method is feasible, and predicted development indices agree well with the development performance of very high water cut oilfields.展开更多
With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-so...With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金the Shandong Provincial Natural Science Foundation(No.ZR2019MEE038,ZR202110260011)the Fundamental Research Funds for the Central Universities(No.19CX02038A)。
文摘A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.
基金supported by the National Natural Science Fund of China (No.52104049)the Science Foundation of China University of Petroleum,Beijing (No.2462022BJRC004)。
文摘In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金Supported by the Sichuan Province Regional Innovation Cooperation Project(21QYCX0048)Sinopec Science and Technology Department Project(P21048-3)。
文摘According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.
基金National Key Basic Research Project(973)一Formation and Distribution of Oil and Gas of Chinese Typical Coincidence Basins(G19990433).
文摘The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activity and igneous rocks formed during the activity show in two aspects. A) The contact surface of igneous rocks and the surrounding sedimentary rocks, like a vertical unconformity surface, formed the conduit of petroleum migration. Petroleum would accumulate once it encountered a trap in which the reservoir had fine porosity and permeability. B) It formed a trap barriered by igneous rocks, or changed or cut the original trap. In addition, volcanic rocks are a kind of potential reservoir, there are many such examples in the world, and oil also shows in the Permian igneous rocks in well Zhong-1 on Tazhong uplift. Petroleum accumulation associated with volcanic activity will be a new exploring field in the Tarim basin.
文摘Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.
基金support from Scientific Research Fund of Sichuan Provincial Education Department, P. R. China (No. 07za143)
文摘Because the oilfields in eastern China are in the very high water cut development stage, accurate forecast of oilfield development indices is important for exploiting the oilfields efficiently. Regarding the problems of the small number of samples collected for oilfield development indices, a new support vector regression prediction method for development indices is proposed in this paper. This method uses the principle of functional simulation to determine the input-output of a support vector machine prediction system based on historical oilfield development data. It chooses the kernel function of the support vector machine by analyzing time series characteristics of the development index; trains and tests the support vector machine network with historical data to construct the support vector regression prediction model of oilfield development indices; and predicts the development index. The case study shows that the proposed method is feasible, and predicted development indices agree well with the development performance of very high water cut oilfields.
文摘With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.