期刊文献+
共找到43,016篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of near-fault earthquake on bridges:lessons learned from Chi-Chi earthquake 被引量:11
1
作者 Chin-Hsiung Loh Wen-I Liao Juin-Fu Chai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期86-93,共8页
The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground mo... The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake,allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined.To study the near-fault ground motion effect on bridge seismic design codes,a two-level seismic design of bridge structures was developed and implemented.This design code reflects the near-fault factors in the seismic design forces.Finally,a risk assessment methodology,based on bridge vulnerability,is also developed to assist in decisions for reducing seismic risk due to failure of bridges. 展开更多
关键词 chi-chi earthquake NEAR-FAULT bridge seismic design risk assessment
下载PDF
Bi-normalized response spectral characteristics of the 1999 Chi-Chi earthquake 被引量:8
2
作者 徐龙军 谢礼立 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第2期147-155,共9页
To develop uniform and seismic environment-dependent design spectrum,common acceleration response spectral characteristics need to be identified.In this paper,a bi-normalized response spectrum (BNRS) is proposed,which... To develop uniform and seismic environment-dependent design spectrum,common acceleration response spectral characteristics need to be identified.In this paper,a bi-normalized response spectrum (BNRS) is proposed,which is defined as a spectrum of peak response acceleration normalized with respect to peak acceleration of the excitation plotted vs.the natural period of the system normalized with respect to the spectrum predominant period,Tp.Based on a statistical analysis of records from the 1999 Chi-Chi earthquake,the conventionally normalized response spectrum(NRS) and the BNRS are examined to account for the effects of soil conditions,epicentral distance,hanging wall and damping.It is found that compared to the NRS the BNRS is much less dependent on these factors.Finally,some simple relationships between the BNRS for a specified damping ratio and that for a damping ratio of 5%,and between the spectra predominant period and epicentral distance for different soil types are provided. 展开更多
关键词 earthquake design spectra normalized response spectrum bi-normalized response spectrum spectral predominant period chi-chi earthquake
下载PDF
Characteristics of response spectra for long-periods of main-shock recordings of the Chi-Chi earthquake 被引量:3
3
作者 陈勇 俞言祥 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第2期111-121,共11页
Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not r... Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed. 展开更多
关键词 long-period main-shock recordings chi-chi earthquake signal-to-noise ratio acceleration response spectrum amplification spectrum
下载PDF
Detecting changes in long-period site responses after the M_w 7.6 Chi-Chi earthquake, Taiwan, using strong motion records 被引量:2
4
作者 Teng-To Yu Chi-Shin Wu Youg-Sin Cheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第2期217-228,共12页
Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and... Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and 2010 are used, comprising 3,708 data from 15 stations adjacent to the Chelungpu fault. Temporal fl uctuations are determined by analyzing the site effect variation using a time–frequency variation(TFV) diagram based on these seismic data. Stations adjacent to the fault show signifi cant disturbances in the resonance frequency at 16–26 Hz. Station TCU129 shows a 40% drop in fundamental frequency after the main shock, and a gradual return to the original state over nine years. For stations located farther from the fault zone, sudden changes in tectonic stress play a dominant role in temporal changes to the HVSR. An impact analysis of the directional factor confi rms our fi nding that the proximity of the fault to seismic stations has the most infl uence on data. 展开更多
关键词 chi-chi earthquake horizontal-to-vertical spectral
下载PDF
Effects of hanging wall and forward directivity in the 1999 Chi-Chi earthquake on inelastic displacement response of structures
5
作者 李爽 谢礼立 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第1期77-84,共8页
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions i... The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods. 展开更多
关键词 NEAR-FIELD FAR-FIELD hanging wall footwall forward directivity inelastic displacement performance evaluation chi-chi earthquake
下载PDF
Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake
6
作者 徐龙军 谢礼立 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第6期707-716,750,共11页
The frequency content of earthquake ground motion is very important because it affects the dynamic response of structural systems. In the paper, we use five scalar parameters (the response spectral predominant period ... The frequency content of earthquake ground motion is very important because it affects the dynamic response of structural systems. In the paper, we use five scalar parameters (the response spectral predominant period Tp, smoothed spectral predominant period To, Fourier amplitude spectral mean period Tm, equivalent pulse period Tv, and the pseudo-velocity spectral predominant period Tpv) reflecting the characteristics of frequency content of strong ground motion to examine the near-fault three-component motions during the 1999 Chi-Chi earthquake. The result indicates that the frequency content of near-fault motions at the Hanging wall is less than that at the foot wall; Tp shows a smaller value than that of To and Tm and it emerges a reverse relation of three-component motions as compared with that of To and Tm; Tv and Tpv of the near-fault motions at the north end of the rupture display a similar trend to that generated by the rupture directivity effect of strike-slip faulting. We therefore conclude that these observations are useful in the formulation of near-fault design spectra for seismic codes and in zoning studies in seismic risk. 展开更多
关键词 frequency content directivity effect hanging-wall effect chi-chi earthquake
下载PDF
An SPH Framework for Earthquake-Induced Liquefaction Hazard Assessment of Geotechnical Structures
7
作者 Sourabh Mhaski G.V.Ramana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期251-277,共27页
Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is es... Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is essential for designing resilient infrastructure.The present study develops a Smoothed Particle Hydrodynamics(SPH)framework for earthquake-induced liquefaction hazard assessment of geotechnical structures.The coupled flowdeformation behaviour of soils subjected to cyclic loading is described using the PM4Sand model implemented in a three-phase,single-layer SPH framework.A staggered discretisation scheme based on the stress particle SPH approach is adopted to minimise numerical inaccuracies caused by zero-energy modes and tensile instability.Further,non-reflecting boundary conditions for seismic analysis of semi-infinite soil domains using the SPH method are proposed.The numerical framework is employed for the analysis of cyclic direct simple shear test,seismic analysis of a level ground site,and liquefaction-induced failure of the Lower San Fernando Dam.Satisfactory agreement for liquefaction triggering and post-failure behaviour demonstrates that the SPH framework can be utilised to assess the effect of seismic loading on field-scale geotechnical structures.The present study also serves as the basis for future advancements of the SPH method for applications related to earthquake geotechnical engineering. 展开更多
关键词 earthquake SEISMIC LIQUEFACTION stress particle PM4Sand smoothed particle hydrodynamics(SPH)
下载PDF
Large-scale shaking table test on unlined tunnel in fault zone under threedimensional earthquake
8
作者 ZHANG Xiaoyu TAO Zhigang +1 位作者 YANG Xiaojie ZHANG Ruixue 《Journal of Mountain Science》 2025年第1期296-311,共16页
A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel const... A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel construction in fault-prone areas particularly vulnerable to the effects of fault activity due to the complexities of the surrounding geological environment.To investigate the dynamic response characteristics of tunnel structures under varying surrounding rock conditions,a three-dimensional large-scale shaking table physical model test was conducted.This study also aimed to explore the damage mechanisms associated with the Tabaiyi Tunnel under seismic loading.The results demonstrate that poor quality surrounding rock enhances the seismic response of the tunnel.This effect is primarily attributed to the distribution characteristics of acceleration,dynamic strain,and dynamic soil pressure.A comparison between unidirectional and multi-directional(including vertical)seismic motions reveals that vertical seismic motion has a more significant impact on specific tunnel locations.Specifically,the maximum tensile stress is observed at the arch shoulder,with values ranging from 60 to 100 k Pa.Moreover,NPR(Non-Prestressed Reinforced)anchor cables exhibit a substantial constant resistance effect under low-amplitude seismic waves.However,when the input earthquake amplitude reaches 0.8g,local sliding occurs at the arch shoulder region of the NPR anchor cable.These findings underscore the importance of focusing on seismic mitigation measures in fault zones and reinforcing critical areas,such as the arch shoulders,in practical engineering applications. 展开更多
关键词 Fault tunnel Shaking table test Dynamic response Three-directional earthquake Damage mechanism
下载PDF
Dynamic rupture process of the 1999 Chi-Chi,Taiwan,earthquake 被引量:3
9
作者 Haiming Zhang Xiaofei Chen 《Earthquake Science》 CSCD 2009年第1期3-12,共10页
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exa... In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance Dc should locate in a narrow region [60 cm, 70 cm], and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength. 展开更多
关键词 dynamic rupture 1999 chi-chi earthquake ground surface boundary integral equation method
下载PDF
Taiwan’ Chi-Chi Earthquake Precursor Detection Using Nonlinear Principal Component Analysis to Multi-Channel Total Electron Content Records 被引量:2
10
作者 Jyh-Woei Lin 《Journal of Earth Science》 SCIE CAS CSCD 2013年第2期244-253,共10页
This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan... This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred. 展开更多
关键词 nonlinear principal component analysis principal component analysis multi-channel total electron content records Taiwan's chi-chi earthquake
原文传递
The MW5.5 earthquake on August 6,2023,in Pingyuan,Shandong,China:A rupture on a buried fault 被引量:5
11
作者 Zhe Zhang Lisheng Xu Lihua Fang 《Earthquake Science》 2024年第1期1-12,共12页
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act... On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future. 展开更多
关键词 Shandong Pingyuan MW5.5 earthquake double-difference earthquake location centroid moment tensor inversion buried fault
下载PDF
Rapid report of source parameters of 2023 M6.2 Jishishan,Gansu earthquake sequence 被引量:2
12
作者 ZhiGao Yang Jie Liu +2 位作者 YingYing Zhang Wen Yang XueMei Zhang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期436-443,共8页
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni... The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster. 展开更多
关键词 Jishishan earthquake earthquake relocation focal mechanism strong motion data
下载PDF
Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi), Taiwan Province, earthquake 被引量:9
13
作者 俞言祥 高孟潭 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第6期654-659,共6页
The M=7.6 Jiji (Chi-Chi) earthquake, Taiwan Province, on September 21, 1999 (local time) is a thrust fault style earthquake. The empirical attenuation relations of the horizontal and vertical peak ground accelerations... The M=7.6 Jiji (Chi-Chi) earthquake, Taiwan Province, on September 21, 1999 (local time) is a thrust fault style earthquake. The empirical attenuation relations of the horizontal and vertical peak ground accelerations (PGA) for the Jiji (Chi-Chi) earthquake are developed by regression method. By examining the residuals from the Jiji (Chi-Chi) earthquake-specific peak acceleration attenuation relations, it is found that there are systematic differences between PGA on the hanging-wall and footwall. The recorded peak accelerations are higher on the hanging-wall and lower on the footwall. The clear asymmetry of PGA distribution to the surface rupture trace can also be seen from the PGA contour map. These evidences indicate that the PGA attenuates faster on the hanging-wall than on the footwall. In the study of near-source strong motion, seismic hazard assessment, scenario earthquake and seismic disaster prediction, the style-of-faulting must be considered in order that the attenuation model can reflect the characteristic of ground motion in various seismic environmental regions. 展开更多
关键词 Jiji (chi-chi) earthquake ground motion hanging-wall effect
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
14
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault earthquake fault
下载PDF
Rapid report of the December 18,2023 M_(S)6.2 Jishishan earthquake,Gansu,China 被引量:5
15
作者 Guangjie Han Danqing Dai +2 位作者 Yu Li Nan Xi Li Sun 《Earthquake Research Advances》 CSCD 2024年第2期14-21,共8页
On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtre... On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake. 展开更多
关键词 earthquake early warning Focal mechanism Rupture process Real-time intensity Coseismic deformation
下载PDF
Rapid rupture characterization for the 2023 M_(S)6.2 Jishishan earthquake 被引量:5
16
作者 Xiongwei Tang Rumeng Guo +5 位作者 Yijun Zhang Kun Dai Jianqiao Xu Jiangcun Zhou Mingqiang Hou Heping Sun 《Earthquake Research Advances》 CSCD 2024年第2期22-26,共5页
On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we i... On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array). 展开更多
关键词 Jishishan earthquake Rupture property Space imaging geodesy Finite fault inversion Back-projection method
下载PDF
Dynamic mechanisms of the post-seismic deformation following large events:Case study of the 1999 Chi-Chi earthquake in Taiwan of China 被引量:6
17
作者 ZHU ShouBiao1,2 & CAI YongEn2 1 Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China 2 Department of Geophysics, Peking University, Beijing 100871, China 《Science China Earth Sciences》 SCIE EI CAS 2009年第11期1813-1824,共12页
The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi,... The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi, Taiwan of China, earthquake occurred in the region where GPS observation station is most densely deployed in the world. The unprecedented GPS data provides a unique opportunity to study the physical processes of postseismic deformation. Here we assume that the interactions of viscoelastic relaxation, afterslip, fault zone collapse, poroelastic rebound, flow of underground fluids, and all these combined contribute to the surface displacements following the main shock. In order to know the essence of the postseismic deformation after the strong event, fault zone collapse, poroelastic rebound, flow of underground fluids, and so on, are represented equivalently by the variations of the focal medium properties. Therefore, the viscoelastic relaxation, afterslip, and the variations of the equivalent focal medium properties are inverted by applying the GPS temporal series measurement data with viscoelastic finite element method. Both the afterslip rate distribution along the fault and the afterslip evolution with time are obtained by means of inversion. Also, the preliminary result suggests that viscosities of the lower crust and the upper mantle in Taiwan region is 2.7×1018 and 4.2×1020 Pa·s, respectively. Moreover, the inversion results indicate that the afterslip contributing to postseismic deformation of 44.6% in 450 days after the Chi-Chi earthquake, with 34.7% caused by the viscous relaxation and 20.7% by other factors such as fault zone collapse, poroelastic rebound, and the flow of liquids. 展开更多
关键词 mechanism of POSTSEISMIC deformation VISCOELASTIC finite element method GPS temporal series data chi-chi earthquake
原文传递
Microearthquake reveals the lithospheric structure at midocean ridges and oceanic transform faults 被引量:1
18
作者 Zhiteng YU Jiabiao LI Weiwei DING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期697-700,共4页
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean... Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought. 展开更多
关键词 microearthquake mid-ocean ridge oceanic transform fault oceanic lithosphere thermal structure earthquake location
下载PDF
Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes 被引量:1
19
作者 Wan Feng Qin Shengwu +7 位作者 Liu Dewen Zhao Tiange Zheng Yanping Shan Hang Li Zhiang Peng Fusong Xu Jingran Lei Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期151-161,共11页
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es... At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures. 展开更多
关键词 SSI in mountainous areas long-period earthquakes mid-story isolated structure structural dynamic analysis
下载PDF
Seismicity gap and seismic quiescence before 1999 Jiji(Chi-Chi) M_W7.6 earthquake 被引量:1
20
作者 Junguo Wang Wenbing Liu Jieqing Zhang 《Earthquake Science》 CSCD 2010年第4期325-331,共7页
The September 21, 1999, Jiji (Chi-Chi) Mw7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China. It is located in the middle segment of the western seismic zone of Taiwan. Based on several vers... The September 21, 1999, Jiji (Chi-Chi) Mw7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China. It is located in the middle segment of the western seismic zone of Taiwan. Based on several versions of China earthquake catalogue this study found that a seismic gap of M≥5 earthquakes appeared, in and around the epicenter region, 24 years before and lasted up to the mainshock occurrence. This study also noticed that there existed a lager seismically quiet region of M≥4 earthquakes, which lasted for about 2.5 years before the mainshock occurrence, The spatial variation pattern of regional seismicity before the mainshock seems to match with its coseismic source rupture process. The mentioned seismicity gap and seismic quiescence might be an indication of the preparation process of the Jiji strong earthquake. 展开更多
关键词 TAIWAN Jiji chi-chi earthquake seismicity gap seismic quiescence
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部