This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the dise...Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the disease since 2000 and an 80%rise in male deaths.If untreated,it results in complications of many vital organs of the human body which may lead to fatality.Early detection of diabetes is a task of significant importance to start timely treatment.This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model and feature fusion of Chi-square and principal component analysis.An ensemble model,logistic tree classifier(LTC),is proposed which incorporates logistic regression and extra tree classifier through a soft voting mechanism.Experiments are also performed using several well-known machine learning algorithms to analyze their performance including logistic regression,extra tree classifier,AdaBoost,Gaussian naive Bayes,decision tree,random forest,and k nearest neighbor.In addition,several experiments are carried out using principal component analysis(PCA)and Chi-square(Chi-2)fea-tures to analyze the influence of feature selection on the performance of machine learning classifiers.Results indicate that Chi-2 features show high performance than both PCA features and original features.However,the highest accuracy is obtained when the proposed ensemble model LTC is used with the proposed fea-ture fusion framework-work which achieves a 0.85 accuracy score which is the highest of the available approaches for diabetes prediction.In addition,the statis-tical T-test proves the statistical significance of the proposed approach over other approaches.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm...Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.展开更多
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted vid...Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and ne...Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.展开更多
DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modelin...DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.展开更多
Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) we...Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) were grown on planar sapphire substrates with c-plane orientation using halide vapor phase epitaxy.The spectral dependencies of the photo to dark current ratio,responsivity,external quantum efficiency and detectivity of the structures were investigated in the wavelength interval of 200−370 nm.The maximum of photo to dark current ratio,responsivity,external quantum efficiency,and detectivity of the structures were 1.16×10^(4) arb.un.,30.6 A/W,1.65×10^(4)%,and 6.95×10^(15) Hz^(0.5)·cm/W at a wavelength of 230 nm and an applied voltage of 1 V.The high values of photoelectric properties were due to the internal enhancement of the photoresponse associated with strong hole trapping.Theα-Ga_(2)O_(3) film-based UVC detectors can function in self-powered operation mode due to the built-in electric field at the Pt/α-Ga_(2)O_(3) interfaces.At a wavelength of 254 nm and zero applied voltage,the structures exhibit a responsivity of 0.13 mA/W and an external quantum efficiency of 6.2×10^(−2)%.The UVC detectors based on theα-Ga_(2)O_(3) films demonstrate high-speed performance with a rise time of 18 ms in self-powered mode.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polar...POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.展开更多
A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constru...A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constructed.The array comprised of 20 single-sided strip-silicon detectors covering approximately 10%of the solid angle.The detectors facilitated the detection of reaction-induced charged particles that penetrate the active volume of the MATE.The performance of MATE-PA has been experimentally studied using an alpha source and a 36-MeV 14 N beam injected into the MATE chamber on the radioactive ion beam line in Lanzhou(RIBLL).The chamber was filled with a gas mixture of 95%4 He and 5%CO_(2) at a pressure of 500 mbar.The results indicated good separation of light-charged particles using the forward double-layer silicon detectors of MATE-PA.The energy resolution of the Si detectors was deduced to be approximately 1%(σ)for an energy loss of approximately 10 MeV caused by theαparticles.The inclusion of MATE-PA improves particle identification and increases the dynamic range of the kinetic energy of charged particles,particularly that of theαparticles,up to approximately 15 MeV.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo...In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.展开更多
Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector ...Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector calibration in seismic systems in China is faced with a series of bottleneck problems,such as aging and scrap,acquisition difficulties,high supervision costs,and transportation limitations of radon sources.As a result,a large number of radon detectors cannot be accurately calibrated regularly,seriously affecting the accuracy and reliability of radon observation data in China.To solve this problem,a new calibration method for radon detectors was established.The advantage of this method is that the dangerous radioactive substance,i.e.,the radon source,can be avoided,but only“standard instruments”and water samples with certain dissolved radon concentrations can be used to realize radon detector calibration.This method avoids the risk of radioactive leakage and solves the current widespread difficulties and bottleneck of radon detector calibration in seismic systems in China.The comparison experiment with the traditional calibration method shows that the error of the calibration coefficient obtained by the new method is less than 5%compared with that by the traditional method,which meets the requirements of seismic observation systems,confirming the reliability of the new method.This new method can completely replace the traditional calibration method of using a radon source in seismic systems.展开更多
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often...Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.展开更多
The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is propose...The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.展开更多
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS...Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.展开更多
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
基金supported by the Florida Center for Advanced Analytics and Data Science funded by Ernesto.Net(under the Algorithms for Good Grant).
文摘Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the disease since 2000 and an 80%rise in male deaths.If untreated,it results in complications of many vital organs of the human body which may lead to fatality.Early detection of diabetes is a task of significant importance to start timely treatment.This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model and feature fusion of Chi-square and principal component analysis.An ensemble model,logistic tree classifier(LTC),is proposed which incorporates logistic regression and extra tree classifier through a soft voting mechanism.Experiments are also performed using several well-known machine learning algorithms to analyze their performance including logistic regression,extra tree classifier,AdaBoost,Gaussian naive Bayes,decision tree,random forest,and k nearest neighbor.In addition,several experiments are carried out using principal component analysis(PCA)and Chi-square(Chi-2)fea-tures to analyze the influence of feature selection on the performance of machine learning classifiers.Results indicate that Chi-2 features show high performance than both PCA features and original features.However,the highest accuracy is obtained when the proposed ensemble model LTC is used with the proposed fea-ture fusion framework-work which achieves a 0.85 accuracy score which is the highest of the available approaches for diabetes prediction.In addition,the statis-tical T-test proves the statistical significance of the proposed approach over other approaches.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金supported by the National Key Research and Development Program of China(No.2020YFE0202002)the National Natural Science Foundation of China(Nos.11875146 and U1932143)。
文摘Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.
基金This work is supported in part by the National Natural Science Foundation of China(Grant Number 61971078)which provided domain expertise and computational power that greatly assisted the activity+1 种基金This work was financially supported by Chongqing Municipal Education Commission Grants forMajor Science and Technology Project(KJZD-M202301901)the Science and Technology Research Project of Jiangxi Department of Education(GJJ2201049).
文摘Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(Nos.11975121,12205131)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-sp58)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0354)。
文摘Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.
基金supported by the National Natural Science Foundation of China(Nos.12175321,11975021,11675275,and U1932101)National Key Research and Development Program of China(Nos.2023YFA1606000 and 2020YFA0406400)+2 种基金State Key Laboratory of Nuclear Physics and Technology,Peking University(Nos.NPT2020KFY04 and NPT2020KFY05)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA10010900)National College Students Science and Technology Innovation Project,and Undergraduate Base Scientific Research Project of Sun Yat-sen University。
文摘DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.
基金support of the Russian Science Foundation,grant number 20-79-10043-P.
文摘Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) were grown on planar sapphire substrates with c-plane orientation using halide vapor phase epitaxy.The spectral dependencies of the photo to dark current ratio,responsivity,external quantum efficiency and detectivity of the structures were investigated in the wavelength interval of 200−370 nm.The maximum of photo to dark current ratio,responsivity,external quantum efficiency,and detectivity of the structures were 1.16×10^(4) arb.un.,30.6 A/W,1.65×10^(4)%,and 6.95×10^(15) Hz^(0.5)·cm/W at a wavelength of 230 nm and an applied voltage of 1 V.The high values of photoelectric properties were due to the internal enhancement of the photoresponse associated with strong hole trapping.Theα-Ga_(2)O_(3) film-based UVC detectors can function in self-powered operation mode due to the built-in electric field at the Pt/α-Ga_(2)O_(3) interfaces.At a wavelength of 254 nm and zero applied voltage,the structures exhibit a responsivity of 0.13 mA/W and an external quantum efficiency of 6.2×10^(−2)%.The UVC detectors based on theα-Ga_(2)O_(3) films demonstrate high-speed performance with a rise time of 18 ms in self-powered mode.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金supported by Department of Physics and GXUNAOC Center for Astrophysics and Space Sciences,Guangxi UniversityThe National Natural Science Foundation of China(Nos.12027803,U1731239,12133003,12175241,U1938201,U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2018JJA110048).
文摘POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.
基金supported by the National Natural Science Foundation of China(Nos.12175280 and 12250610193)the National Key R&D Program of China(No.2016YFA0400500)+1 种基金the support of the CAS“Light of West China”Programthe support of the Natural Science Foundation of Gansu(No.23JRRA676)。
文摘A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constructed.The array comprised of 20 single-sided strip-silicon detectors covering approximately 10%of the solid angle.The detectors facilitated the detection of reaction-induced charged particles that penetrate the active volume of the MATE.The performance of MATE-PA has been experimentally studied using an alpha source and a 36-MeV 14 N beam injected into the MATE chamber on the radioactive ion beam line in Lanzhou(RIBLL).The chamber was filled with a gas mixture of 95%4 He and 5%CO_(2) at a pressure of 500 mbar.The results indicated good separation of light-charged particles using the forward double-layer silicon detectors of MATE-PA.The energy resolution of the Si detectors was deduced to be approximately 1%(σ)for an energy loss of approximately 10 MeV caused by theαparticles.The inclusion of MATE-PA improves particle identification and increases the dynamic range of the kinetic energy of charged particles,particularly that of theαparticles,up to approximately 15 MeV.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金supported by the National Natural Science Foundation of China(Nos.11875274 and U1232202)。
文摘In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.
基金supported by the National Natural Science Foundation of China Study on the Key Technology of Non-radium Source Radon Chamber(No.42274235).
文摘Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector calibration in seismic systems in China is faced with a series of bottleneck problems,such as aging and scrap,acquisition difficulties,high supervision costs,and transportation limitations of radon sources.As a result,a large number of radon detectors cannot be accurately calibrated regularly,seriously affecting the accuracy and reliability of radon observation data in China.To solve this problem,a new calibration method for radon detectors was established.The advantage of this method is that the dangerous radioactive substance,i.e.,the radon source,can be avoided,but only“standard instruments”and water samples with certain dissolved radon concentrations can be used to realize radon detector calibration.This method avoids the risk of radioactive leakage and solves the current widespread difficulties and bottleneck of radon detector calibration in seismic systems in China.The comparison experiment with the traditional calibration method shows that the error of the calibration coefficient obtained by the new method is less than 5%compared with that by the traditional method,which meets the requirements of seismic observation systems,confirming the reliability of the new method.This new method can completely replace the traditional calibration method of using a radon source in seismic systems.
基金supported in part by the National Natural Science Foundation of China(42001408).
文摘Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.
基金supported by the National Natural Science Foundation of China(Nos.12322302,12275279 and U1931201)the National Key R&D Program of China(No.2023YFE0102300)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061)the Chinese Academy of Sciencesthe Entrepreneurship and Innovation Program of Jiangsu Province。
文摘The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.
基金financially supported by the National Natural Science Foundation of China(No.61804136,U1804155,11974317,62027816,12074348,and U2004168)Henan Science Fund for Distinguished Young Scholars(No.212300410020)+2 种基金Natural Science Foundation of Henan Province(No.212300410020 and 212300410078)Key Project of Henan Higher Education(No.21A140001)the Zhengzhou University Physics Discipline Improvement Program and China Postdoctoral Science Foundation(No.2018M630829 and 2019 T120630)
文摘Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.