期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Automatic Diagnosis of Polycystic Ovarian Syndrome Using Wrapper Methodology with Deep Learning Techniques
1
作者 Mohamed Abouhawwash S.Sridevi +3 位作者 Suma Christal Mary Sundararajan Rohit Pachlor Faten Khalid Karim Doaa Sami Khafaga 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期239-253,共15页
One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrom... One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrome can help in the process of recovery.Finding a method to aid doctors in this procedure was crucial due to the difficulties in detecting this condition.This research aimed to determine whether it is possible to optimize the detection of PCOS utilizing Deep Learning algorithms and methodologies.Additionally,feature selection methods that produce the most important subset of features can speed up calculation and enhance the effectiveness of classifiers.In this research,the tri-stage wrapper method is used because it reduces the computation time.The proposed study for the Automatic diagnosis of PCOS contains preprocessing,data normalization,feature selection,and classification.A dataset with 39 characteristics,including metabolism,neuroimaging,hormones,and biochemical information for 541 subjects,was employed in this scenario.To start,this research pre-processed the information.Next for feature selection,a tri-stage wrapper method such as Mutual Information,ReliefF,Chi-Square,and Xvariance is used.Then,various classification methods are tested and trained.Deep learning techniques including convolutional neural network(CNN),multi-layer perceptron(MLP),Recurrent neural network(RNN),and Bi long short-term memory(Bi-LSTM)are utilized for categorization.The experimental finding demonstrates that with effective feature extraction process using tri stage wrapper method+CNN delivers the highest precision(97%),high accuracy(98.67%),and recall(89%)when compared with other machine learning algorithms. 展开更多
关键词 Deep learning automatic detection polycystic ovarian syndrome tri-stage wrapper method mutual information RELIEF chi-squarE
下载PDF
Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China 被引量:9
2
作者 Fang Ye Zhi-Hua Chen +4 位作者 Jie Chen Fang Liu Yong Zhang Qin-Ying Fan Lin Wang 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第10期1193-1199,共7页
Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconc... Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1,2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. 展开更多
关键词 chi-squared automatic interaction detection Decision Tree Analysis Infant Anemia Logistic Regression Analysis
原文传递
杭州市上城区成年人高血压影响因素的分类树研究 被引量:3
3
作者 施明明 张晓 胡锦峰 《江苏预防医学》 CAS 2021年第1期28-31,共4页
目的应用分类树模型分析杭州市上城区成年人高血压相关影响因素,为社区高血压精准防控提供依据。方法对2 762名≥18岁上城区社区居民进行问卷调查、体格检查和实验室检测,应用卡方自动交互检测(CHAID)法建立高血压分类树模型筛选相关因... 目的应用分类树模型分析杭州市上城区成年人高血压相关影响因素,为社区高血压精准防控提供依据。方法对2 762名≥18岁上城区社区居民进行问卷调查、体格检查和实验室检测,应用卡方自动交互检测(CHAID)法建立高血压分类树模型筛选相关因素,采取模型错分概率Risk统计量及受试者工作特征曲线(ROC)下面积对模型进行评估。结果 2 762名≥18岁社区居民中,高血压患者956例,高血压患病率为34.61%,标化患病率为15.83%。分类树模型共4层37个节点,从全部19个变量中筛选出年龄、BMI、中心型肥胖、血脂异常、高血压家族史、糖尿病、吸烟、被动吸烟8个解释变量,其中年龄是最重要的因素,高血压患病率随着年龄的增长而升高;模型显示,在不同年龄层下,高血压影响因素不尽相同。模型错分概率Risk统计量为0.224,利用预测概率绘制的ROC曲线下面积为0.713(95%CI:0.694~0.731),模型拟合效果较好。结论杭州市上城区居民高血压患病率较高,分类树模型不仅可以有效地挖掘高血压相关因素,且能定义不同的亚人群,对精准防控有较高的应用价值。 展开更多
关键词 高血压 分类树模型 卡方自动交互检测法
下载PDF
应用分类树模型构建耐多药结核病发病风险模型 被引量:19
4
作者 蔡晓楠 张丹丹 +2 位作者 严亚琼 谈迪心 许奕华 《中华疾病控制杂志》 CAS CSCD 北大核心 2016年第1期91-95,共5页
目的应用分类树模型构建耐多药结核病发病风险模型,评价其应用价值。方法采用病例对照研究,问卷调查收集研究对象暴露信息,分析W市人群耐多药结核病影响因素,利用分类树模型卡方自动交互检测法建立耐多药结核病发病风险模型,通过收益图... 目的应用分类树模型构建耐多药结核病发病风险模型,评价其应用价值。方法采用病例对照研究,问卷调查收集研究对象暴露信息,分析W市人群耐多药结核病影响因素,利用分类树模型卡方自动交互检测法建立耐多药结核病发病风险模型,通过收益图、索引图及错分概率Risk统计量评价模型应用价值。结果分类树模型共3层,9个结节点,筛检出结核接触史、家庭经济困难、其他慢性呼吸系统疾病史和吸烟史4个解释变量。模型错分概率Risk统计量0.160,模型拟合效果较好。结论分类树模型不仅可以有效拟合耐多药结核病发病风险预测模型,还可以揭示变量间交互作用。关注家庭经济困难和患有其他慢性呼吸系统疾病的人群,加大密切接触者筛查和控制吸烟将有助于预防和控制人群中耐多药结核病发病。 展开更多
关键词 病例对照研究 结核 卡方自动交互检测法
原文传递
应用分类树模型构建缺血性脑卒中发病风险的预测模型 被引量:24
5
作者 刘建平 程锦泉 +2 位作者 张仁利 耿艺介 聂绍发 《中国慢性病预防与控制》 CAS 2012年第3期254-258,共5页
目的应用分类树模型构建缺血性脑卒中发病风险的预测模型,并评价其应用价值。方法采用1:1配比病例对照研究设计,选择深圳市2所综合性医院的309名缺血性脑卒中患者为病例组,同时选择按年龄、性别匹配的健康者作为对照;采用卡方自动交互检... 目的应用分类树模型构建缺血性脑卒中发病风险的预测模型,并评价其应用价值。方法采用1:1配比病例对照研究设计,选择深圳市2所综合性医院的309名缺血性脑卒中患者为病例组,同时选择按年龄、性别匹配的健康者作为对照;采用卡方自动交互检测(CHAID)法建立缺血性脑卒中发病风险的预测模型,采用错分概率Risk值、索引图及受试者工作特征曲线(ROC)评价模型的应用价值。结果所建立的分类树模型共包括4层,共19个结点,共筛检出6个解释变量;其中最为重要的预测因素为体育锻炼和高血压病史。模型错分概率Risk值为0.207,利用预测概率绘制的ROC曲线下面积为0.789,与0.5比较,差异有统计学意义(P=0.001),模型拟合的效果较好。结论分类树模型不仅能有效地拟合缺血性脑卒中发病风险的预测模型,还可以有效地筛检变量间的交互作用效应。 展开更多
关键词 缺血性脑卒中 分类树 卡方自动交互检测法
原文传递
应用分类树模型筛选恶性肿瘤危险因素的研究 被引量:24
6
作者 张勇晶 陈坤 +1 位作者 金明娟 范春红 《中华流行病学杂志》 CAS CSCD 北大核心 2006年第6期540-543,共4页
目的介绍分类树模型筛选恶性肿瘤危险因素基本原理、运算法则和应用价值。方法以浙江省嘉善县乳腺癌现场调查数据为例,采用Exhaustive CHAID法建立分类树模型对调查结果进行危险因素筛选,使用错分概率Risk值和ROC曲线下面积对模型进行... 目的介绍分类树模型筛选恶性肿瘤危险因素基本原理、运算法则和应用价值。方法以浙江省嘉善县乳腺癌现场调查数据为例,采用Exhaustive CHAID法建立分类树模型对调查结果进行危险因素筛选,使用错分概率Risk值和ROC曲线下面积对模型进行评价。结果分类树模型从全部105个候选变量中筛选出9个危险因素,其中职业是最重要的影响因素,工人、教师及退休人员的乳腺癌发生概率显著高于其他人员。另外,模型显示经常参加体育锻炼在不同人群中对乳腺癌的影响效果有所不同。模型错分概率Risk值为0.174,利用预测概率绘制的ROC曲线下面积为0.872,与0.5比较具有显著的统计学意义,模型拟合效果很好。结论分类树模型不仅可以有效挖掘筛选出主要的影响因素,还可以对研究变量科学定义分界点,展示变量间复杂的相互作用,在流行病学研究中具有较高的应用价值。 展开更多
关键词 分类树模型 乳腺肿瘤 危险因素 卡方自动交互检测法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部