In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated wit...In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary...In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.展开更多
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
Grover’s search algorithm is one of the most significant quantum algorithms,which can obtain quadratic speedup of the extensive search problems.Since Grover's search algorithm cannot be implemented on a real quan...Grover’s search algorithm is one of the most significant quantum algorithms,which can obtain quadratic speedup of the extensive search problems.Since Grover's search algorithm cannot be implemented on a real quantum computer at present,its quantum simulation is regarded as an effective method to study the search performance.When simulating the Grover's algorithm,the storage space required is exponential,which makes it difficult to simulate the high-qubit Grover’s algorithm.To this end,we deeply study the storage problem of probability amplitude,which is the core of the Grover simulation algorithm.We propose a novel memory-efficient method via amplitudes compression,and validate the effectiveness of the method by theoretical analysis and simulation experimentation.The results demonstrate that our compressed simulation search algorithm can help to save nearly 87.5%of the storage space than the uncompressed one.Thus under the same hardware conditions,our method can dramatically reduce the required computing nodes,and at the same time,it can simulate at least 3 qubits more than the uncompressed one.Particularly,our memory-efficient simulation method can also be used to simulate other quantum algorithms to effectively reduce the storage costs required in simulation.展开更多
When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorith...When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorithm with small phase rotations is proposed. Several quantum search algorithms can be derived from this algorithm according to different phase rotations. When the size of phase rotations are fixed at 0. 01π, the success probability of at least 99. 99% can be obtained in 0(√N/M) iterations.展开更多
This paper provides an introduction to a quantum search algorithm,known as Grover’s Algorithm,for unsorted search purposes.The algorithm is implemented in a search space of 4 qubits using the Python-based Qiskit SDK ...This paper provides an introduction to a quantum search algorithm,known as Grover’s Algorithm,for unsorted search purposes.The algorithm is implemented in a search space of 4 qubits using the Python-based Qiskit SDK by IBM.While providing detailed proof,the computational complexity of the algorithm is generalized to n qubits.The implementation results obtained from the IBM QASM Simulator and IBMQ Santiago quantum backend are analyzed and compared.Finally,the paper discusses the challenges faced in implementation and real-life applications of the algorithm hitherto.Overall,the implementation and analysis depict the advantages of this quantum search algorithm over its classical counterparts.展开更多
When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is pr...When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.展开更多
After Google reported its realization of quantum supremacy,Solving the classical problems with quantum computing is becoming a valuable research topic.Switching function minimization is an important problem in Electro...After Google reported its realization of quantum supremacy,Solving the classical problems with quantum computing is becoming a valuable research topic.Switching function minimization is an important problem in Electronic Design Automation(EDA)and logic synthesis,most of the solutions are based on heuristic algorithms with a classical computer,it is a good practice to solve this problem with a quantum processer.In this paper,we introduce a new hybrid classic quantum algorithm using Grover’s algorithm and symmetric functions to minimize small Disjoint Sum of Product(DSOP)and Sum of Product(SOP)for Boolean switching functions.Our method is based on graph partitions for arbitrary graphs to regular graphs,which can be solved by a Grover-based quantum searching algorithm we proposed.The Oracle for this quantum algorithm is built from Boolean symmetric functions and implemented with Lattice diagrams.It is shown analytically and verified by simulations on a quantum simulator that our methods can find all solutions to these problems.展开更多
In order to deliver a complete reliable software product, testing is performed. As testing phase carries on, cost of testing process increases and it directly affects the overall project cost. Many a times it happens ...In order to deliver a complete reliable software product, testing is performed. As testing phase carries on, cost of testing process increases and it directly affects the overall project cost. Many a times it happens that the actual cost becomes more than the estimated cost. Cost is considered as the most important parameter with respect to software testing, in software industry. In recent year’s researchers have done a variety of work in the area of Cost optimization by using various concepts like Genetic Algorithm, simulated annealing and Automation in generation of test data etc. This paper proposes an efficient cost effective approach for optimizing the cost of testing using Tabu Search (TS), which will provide maximum code coverage along with the concepts of Dijkstra’s Algorithm which will be implemented in Aspiration criteria of Tabu Search in order to optimize the cost and generate a minimum cost path with maximum coverage.展开更多
基金supported by Zhejiang Provincial Key Laboratory of Communication Networks and Applications and National Natural Science Foundation of China under Grant No.60872020
文摘In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
基金Supported by the National High Technology Research and Development Program(No.2011AA010803)the National Natural Science Foundation of China(No.U1204602)
文摘In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
基金This work was supported by Funding of National Natural Science Foundation of China(Grant No.61571226,Grant No.61701229).
文摘Grover’s search algorithm is one of the most significant quantum algorithms,which can obtain quadratic speedup of the extensive search problems.Since Grover's search algorithm cannot be implemented on a real quantum computer at present,its quantum simulation is regarded as an effective method to study the search performance.When simulating the Grover's algorithm,the storage space required is exponential,which makes it difficult to simulate the high-qubit Grover’s algorithm.To this end,we deeply study the storage problem of probability amplitude,which is the core of the Grover simulation algorithm.We propose a novel memory-efficient method via amplitudes compression,and validate the effectiveness of the method by theoretical analysis and simulation experimentation.The results demonstrate that our compressed simulation search algorithm can help to save nearly 87.5%of the storage space than the uncompressed one.Thus under the same hardware conditions,our method can dramatically reduce the required computing nodes,and at the same time,it can simulate at least 3 qubits more than the uncompressed one.Particularly,our memory-efficient simulation method can also be used to simulate other quantum algorithms to effectively reduce the storage costs required in simulation.
基金Supported by National Natural Science Foundation of China ( No. 60773065 ).
文摘When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorithm with small phase rotations is proposed. Several quantum search algorithms can be derived from this algorithm according to different phase rotations. When the size of phase rotations are fixed at 0. 01π, the success probability of at least 99. 99% can be obtained in 0(√N/M) iterations.
文摘This paper provides an introduction to a quantum search algorithm,known as Grover’s Algorithm,for unsorted search purposes.The algorithm is implemented in a search space of 4 qubits using the Python-based Qiskit SDK by IBM.While providing detailed proof,the computational complexity of the algorithm is generalized to n qubits.The implementation results obtained from the IBM QASM Simulator and IBMQ Santiago quantum backend are analyzed and compared.Finally,the paper discusses the challenges faced in implementation and real-life applications of the algorithm hitherto.Overall,the implementation and analysis depict the advantages of this quantum search algorithm over its classical counterparts.
文摘When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.
文摘After Google reported its realization of quantum supremacy,Solving the classical problems with quantum computing is becoming a valuable research topic.Switching function minimization is an important problem in Electronic Design Automation(EDA)and logic synthesis,most of the solutions are based on heuristic algorithms with a classical computer,it is a good practice to solve this problem with a quantum processer.In this paper,we introduce a new hybrid classic quantum algorithm using Grover’s algorithm and symmetric functions to minimize small Disjoint Sum of Product(DSOP)and Sum of Product(SOP)for Boolean switching functions.Our method is based on graph partitions for arbitrary graphs to regular graphs,which can be solved by a Grover-based quantum searching algorithm we proposed.The Oracle for this quantum algorithm is built from Boolean symmetric functions and implemented with Lattice diagrams.It is shown analytically and verified by simulations on a quantum simulator that our methods can find all solutions to these problems.
文摘In order to deliver a complete reliable software product, testing is performed. As testing phase carries on, cost of testing process increases and it directly affects the overall project cost. Many a times it happens that the actual cost becomes more than the estimated cost. Cost is considered as the most important parameter with respect to software testing, in software industry. In recent year’s researchers have done a variety of work in the area of Cost optimization by using various concepts like Genetic Algorithm, simulated annealing and Automation in generation of test data etc. This paper proposes an efficient cost effective approach for optimizing the cost of testing using Tabu Search (TS), which will provide maximum code coverage along with the concepts of Dijkstra’s Algorithm which will be implemented in Aspiration criteria of Tabu Search in order to optimize the cost and generate a minimum cost path with maximum coverage.