In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperatur...In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperature and precipitation in China change in phase with AO. High positive correlation (>0.4) between temperature and AO appears in the northern China. High correlation coefficients between precipitation and AO cover the southern China (close to the South China Sea) and the central China (between 30 o -40 o N and east of ~100 o E), with the values varying between +0.3 and +0.4. It is found that during the past several decades the precipitation was strongly affected by AO, but for the temperature the Siberian High plays a more important role. At the interdecadal time scale the AO has significant influence on both temperature and precipitation. Multivariate regression analysis demonstrates that AO and the Siberian High related variance in temperature and precipitation is 35% and 11% respectively. For precipitation, however the portion is rather low, implying that some other factors may be responsible for the changes in precipitation, in addition to AO and the Siberian High.展开更多
基金The Excellent Young Teachers Program of MOE No.EYTP-1964+1 种基金 National Natural Science Foundation of China No.NSFC-40105007
文摘In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperature and precipitation in China change in phase with AO. High positive correlation (>0.4) between temperature and AO appears in the northern China. High correlation coefficients between precipitation and AO cover the southern China (close to the South China Sea) and the central China (between 30 o -40 o N and east of ~100 o E), with the values varying between +0.3 and +0.4. It is found that during the past several decades the precipitation was strongly affected by AO, but for the temperature the Siberian High plays a more important role. At the interdecadal time scale the AO has significant influence on both temperature and precipitation. Multivariate regression analysis demonstrates that AO and the Siberian High related variance in temperature and precipitation is 35% and 11% respectively. For precipitation, however the portion is rather low, implying that some other factors may be responsible for the changes in precipitation, in addition to AO and the Siberian High.