The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is cold...The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO. the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.展开更多
The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological...The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.展开更多
Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has incre...Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.展开更多
The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studi...The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.展开更多
Since no consensus has been reached in previous studies about how the summer climate in China will evolve in the first half of the 21st century, this issue is addressed here through sensitivity experiments by forcing ...Since no consensus has been reached in previous studies about how the summer climate in China will evolve in the first half of the 21st century, this issue is addressed here through sensitivity experiments by forcing an atmospheric general circulation model (AGCM), the Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmospheric Model Version 2.0 (AM2) with projected sea surface temperature (SST) trend. A total of two SST trends from the Intergovernmental Panels on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) AlB are used. The two trends are from two coupled climate system models, the National Center for Atmospheric Research (NCAR) Community Climate System Model Version 3.0 (CCSM3) and the GFDL Climate Model Version 2.0 (CM2), respectively. Results consistently suggest a substantial warming and drying trend over much of China, with a surface air temperature increase of 1.0-2.0℃ and a 10%-20% decrease in rainfall. Exceptions are the areas from northwestern China to western North China as well as the southern Tibetan Plateau, which are projected to be wetter with a rainfall anomaly percentage increase of 10%-50%. The drying in eastern North China has not been documented to date but appears to be reasonable. Physically, it is attributed to anomalous northeasterly winds at the rear of a low-level cyclone over the South China Sea, the Philippines and the subtropical western North Pacific. These conditions, which govern the climate of eastern China, are forced by the northward shift of convection over warm waters due to additional warming.展开更多
Climate change is a challenge faced by the whole humanity.As the world's largest developing country, China attaches great importance to climate change and has taken effective measures to address climate change iss...Climate change is a challenge faced by the whole humanity.As the world's largest developing country, China attaches great importance to climate change and has taken effective measures to address climate change issues despite its tremendous task to develop economy, eliminate poverty and improve people's livelihood.展开更多
Global climate change is real and already taking place. The most recent Fifth Assessment Report of the Intergov- ernmental Panel on Climate Change (IPCC AR5) stated that global land and ocean surface temperature inc...Global climate change is real and already taking place. The most recent Fifth Assessment Report of the Intergov- ernmental Panel on Climate Change (IPCC AR5) stated that global land and ocean surface temperature increased by 0.85℃ over the period of 1880 to 2012 (IPCC Climate Change 2013). China is among the most affected countries by global climate change.展开更多
The author discusses the subject in both ecological and political perspectives based on a most comprehensive,authoritative and updated bibliography.Hence,Latin America and the Caribbean(LAC) is as much diversified as ...The author discusses the subject in both ecological and political perspectives based on a most comprehensive,authoritative and updated bibliography.Hence,Latin America and the Caribbean(LAC) is as much diversified as there are sub-regions and regional organizations in geopolitical and geo-economical terms and often dialectic regarding energy security,climate change and LAC ties with Europeans and China and so is the tripartite relations with the rest of the world so far as energy security and climate cha...展开更多
Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice...Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice growth period in Liangping County,and analyzed its climate tendency rate. Results showed that climate tendency rate of crop water requirement during growth period of rice was only- 0. 007 mm /10 a; climate tendency rate of rainfall was- 0. 06 mm /10 a,but interannual change was relatively larger; climate tendency rate of net irrigation water requirement was 0. 011 mm /10 a. In the years when drought occurred,such as 2006 and 2011,both rice water requirement and net irrigation water requirement in Liangping were greatly higher than means over the years. Therefore,we should focus on drought pre-warning and risk management improving drought disaster prevention in Liangping in the future.展开更多
In this paper,land surface observation data at semi-arid climate and environmental observation station( SACOL station) of Lanzhou University during 2006- 2012 and the data of Yuzhong meteorological station were used...In this paper,land surface observation data at semi-arid climate and environmental observation station( SACOL station) of Lanzhou University during 2006- 2012 and the data of Yuzhong meteorological station were used to analyze the responses of land surface radiation budget components to climate fluctuation,study the interannual variability of surface albedo,and discuss the feedback of various land surface process parameters on the interannual fluctuations of temperature and precipitation in Loess Plateau. According to the type of precipitation in Loess Plateau,the year was divided into winter and summer in order to get more significant interannual variability and correlation. The results showed that the trends of temperature and precipitation during 2006- 2012 were consistent with the warming and drying total trend in recent years in Loess Plateau. Shallow surface soil moisture and temperature showed a good response to temperature and precipitation,and the annual variation of summer half year had greater impact on the trend in the whole year. Incident solar radiation increase was major reason for climate warming in the Loess Plateau region.The combined effect of climatic factors was the reason for the change of surface albedo. Through the distinguish inquiry by winter and summer data,it was obtained that most correlations between summer radiation components and climatic factors have been improved,and partial correlations between winter radiation components and climatic factors have been increased.展开更多
How many NGOs were there in the climate change field in the United States? Who were they? And what was the relationship between them? In the United States,climate change was only a branch of environmental issues at...How many NGOs were there in the climate change field in the United States? Who were they? And what was the relationship between them? In the United States,climate change was only a branch of environmental issues at the beginning; therefore there were no specific quantitative statistics and network analysis of NGOs in climate change. Diversity was an important feature of NGOs in American climate change fields,and it showed a complex organizational ecology through varieties of networks and interaction among organizations. In order to make a difference in climate field,Chinese NGOs firstly needed to improve and enhance their own abilities.展开更多
Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,the...Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,their efficiency varies and inter-comparison is a challenging task,as they use a variety of target variables,geographic regions,time periods,or model pools.Here,we construct and use a consistent framework to evaluate the performance of five ensemble-processing methods,i.e.,multimodel ensemble mean(MME),rank-based weighting(RANK),reliability ensemble averaging(REA),climate model weighting by independence and performance(ClimWIP),and Bayesian model averaging(BMA).We investigate the annual mean temperature(Tav)and total precipitation(Prcptot)changes(relative to 1995–2014)over China and its seven subregions at 1.5 and 2℃warming levels(relative to pre-industrial).All ensemble-processing methods perform better than MME,and achieve generally consistent results in terms of median values.But they show different results in terms of inter-model spread,served as a measure of uncertainty,and signal-to-noise ratio(SNR).ClimWIP is the most optimal method with its good performance in simulating current climate and in providing credible future projections.The uncertainty,measured by the range of 10th–90th percentiles,is reduced by about 30%for Tav,and 15%for Prcptot in China,with a certain variation among subregions.Based on ClimWIP,and averaged over whole China under 1.5/2℃global warming levels,Tav increases by about 1.1/1.8℃(relative to 1995–2014),while Prcptot increases by about 5.4%/11.2%,respectively.Reliability of projections is found dependent on investigated regions and indices.The projection for Tav is credible across all regions,as its SNR is generally larger than 2,while the SNR is lower than 1 for Prcptot over most regions under 1.5℃warming.The largest warming is found in northeastern China,with increase of 1.3(0.6–1.7)/2.0(1.4–2.6)℃(ensemble’s median and range of the 10th–90th percentiles)under 1.5/2℃warming,followed by northern and northwestern China.The smallest but the most robust warming is in southwestern China,with values exceeding 0.9(0.6–1.1)/1.5(1.1–1.7)℃.The most robust projection and largest increase is achieved in northwestern China for Prcptot,with increase of 9.1%(–1.6–24.7%)/17.9%(0.5–36.4%)under 1.5/2℃warming.Followed by northern China,where the increase is 6.0%(–2.6–17.8%)/11.8%(2.4–25.1%),respectively.The precipitation projection is of large uncertainty in southwestern China,even with uncertain sign of variation.For the additional half-degree warming,Tav increases more than 0.5℃throughout China.Almost all regions witness an increase of Prcptot,with the largest increase in northwestern China.展开更多
Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attem...Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attempts to adapt to climate change. Due to a lack of records based on continuous long-term observation, studies on changes in multiple consecutive phenological stages throughout a whole growing season on a national scale are rarely found, especially with regard to the spatiotemporal differentiation of phenological changes. Using a long-term dataset(1981-2010) of wheat phenology collected from 48 agro-meteorological stations in China, we qualified the spatiotemporal changes of 10 phenological stages as well as the length of wheat growth phases. Results showed that climate and wheat phenology changed significantly during the growing seasons from 1981 to 2010. On average, on a national scale, dates of sowing(0.19 d a-1), emergence(0.06 d a-1), trefoil(0.05 d a-1), and milk ripe(0.06 d a-1) showed a delaying trend, whereas dates of tillering(-0.02 d a-1), jointing(-0.15 d a-1),booting(-0.21 d a-1), heading(-0.17 d a-1), anthesis(-0.19 d a-1), and maturity(-0.10 d a-1) showed an advancing trend.Furthermore, the vegetative growth phase and growing season were shortened by 0.23 and 0.29 d a-1, respectively, whereas the reproductive growth phase was lengthened by 0.06 d a-1. Trends in dates of phenological stages or length of growing phases varied across wheat-planting regions. Moreover, spatiotemporal differentiation of sensitivity in growing season length(GSL) to variations in climatic factors during the growing season between spring and winter wheat were remarkable. The GSL of spring(winter) wheat decreased(increased) with an increase in average temperature during the growing season. In all wheat-planting regions, the GSL increased with the increasing of total precipitation and sunshine duration during the growing season. In particular, the sensitivity of GSL to precipitation for spring wheat was weaker than for winter wheat, while the sensitivity of GSL to sunshine duration for spring wheat was stronger than for winter wheat. Recognition of the spatiotemporal differentiation of phenological changes and their response to various climatic factors will provide scientific support for decision-making in agricultural production.展开更多
Based on the data of monthly mean air temperature and precipitation from about 400 stations in 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,total cloud cover and low-cloud cover,su...Based on the data of monthly mean air temperature and precipitation from about 400 stations in 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,total cloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered days and depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961 —1995.the climate change and its characteristics in China in recent 45 years have been analyzed and studied comprehensively.This paper,as the first part of the work.has analyzed the climate change and regularities of such meteorological elements as mean air temperature,maximum and minimum air temperatures,precipitation,relative humidity and sunshine duration.The possible mechanism on climate change in China and the climate change and regularities of other meteorological elements will be discussed in another paper as the second part.展开更多
Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic ...Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic aerosols(AAs), and land use(LU)) and external natural forcings(Nat) to climate changes in China over the past 50 years were quantified. Both anthropogenic and external natural forcings account for 95%–99% of the observed temperature change from 1951–1975 to 1981–2005. In particular, the temperature changes induced by GHGs are approximately 2–3 times stronger than the observed changes, and AAs impose a significant cooling effect. The total external forcings can explain 65%–78% of the observed precipitation changes over the past 50 years, in which AAs and GHGs are the primary external forcings leading to the precipitation changes; in particular, AAs dominate the main spatial features of precipitation changes in eastern China. Human activities also dominate the long-term non-linear trends in observed temperature during the past several decades, and, in particular, GHGs, the primary warming contributor, have produced significant warming since the 1960 s. Compared to the long-term non-linear trends in observed precipitation, GHGs have largely caused the wetting changes in the arid-semiarid region since the 1970 s, whereas AAs have led to the drying changes in the humid-semihumid region; both LU and Nat can impose certain impacts on the long-term non-linear trends in precipitation. Using the optimal fingerprinting detection approach, the effects of human activities on the temperature changes can be detected and attributed in China, and the effect of GHGs can be clearly detected from the observations in humid-semihumid areas. However, the anthropogenic effects cannot be detected in the observed precipitation changes, which may be due to the uncertainties in the model simulations and to other issues. Although some results in this paper still need improvement due to uncertainties in the coupled models, this study is expected to provide the background and scientific basis for climate changes to conduct vulnerability and risk assessments of the ecological systems and water resources in the arid-semiarid region of China.展开更多
Infrastructure systems play a fundamental role in reducing greenhouse gas(GHG)emissions to avert global climate change(Kennedy et al.,2014).Transportations are recognized as one of the key factors for facilitating cli...Infrastructure systems play a fundamental role in reducing greenhouse gas(GHG)emissions to avert global climate change(Kennedy et al.,2014).Transportations are recognized as one of the key factors for facilitating climate change mitigation(Shaw et al.,2014).Approximately 19%of global energy consumption and 23%of energy-related carbon dioxide(CO2)emissions come from the transportation sector(IEA,2012).The demands are still increasing at an annual average rate of 1.4%(EIA,2016).Scholars展开更多
The dynamics of agricultural and forestry biomass are highly sensitive to climate change, particularly in high latitude regions. Heilongjiang Province was selected as research area in North-east China. We explored the...The dynamics of agricultural and forestry biomass are highly sensitive to climate change, particularly in high latitude regions. Heilongjiang Province was selected as research area in North-east China. We explored the trend of regional climate warming and distribution feature of biomass resources, and then analyzed on the spatial relationship between climate factors and biomass resources. Net primary productivity (NPP) is one of the key indicators of vegetation productivity, and was simulated as base data to calculate the distribution of agricultural and forestry biomass. The results show that temperatures rose by up to 0.37℃/10a from 1961 to 2013. Spatially, the variation of agricultural biomass per unit area changed from -1.93 to 5.85 t.km^-2.a^-1 during 2000,2013. More than 85% of farmland areas showed a positive relationship be.tween agricultural biomass and precipitation. The results suggest that precipitation exerts an overwhelming climate influence on agricultural biomass. The mean density of forestry biomass varied from 10 to 30 t·km^-2. Temperature had a significant negative effect on forestry biomass in Lesser Khingan and northern Changbai Mountain, because increased temperature leads to decreased Rubisco activity and increased respiration in these areas. Precipitation had a significant positive relationship with forestry biomass in south-western Changbai Mountain, because this area had a wanner climate and stress from insufficient precipitation may induce xylem cavitation. Understanding the effects of climate factors on regional biomass resources is of great significance in improving environmental management and promoting sustainable development of further biomass resource use.展开更多
According to the latest research of ecosystem service( ES),the background and connotation of ecosystem services were briefly summarized,the relationship among human activity,climate change,and biodiversity and ecosy...According to the latest research of ecosystem service( ES),the background and connotation of ecosystem services were briefly summarized,the relationship among human activity,climate change,and biodiversity and ecosystem service function( ESF) was synthetically analyzed,the research trends of ecosystem services function assessment( ESFA) were discussed from multi-scale,and the perspectives was given based on the past studies. The ecological long-term location monitoring method based on the ESFA should be studied,evaluation index of ESFA should be further improved,and the ESF research on the arid region should be reinforced.展开更多
Previous studies have demonstrated that the low-frequency sea surface temperature(SST) variability in the Yellow Sea and East China Sea(YECS) is linked to large-scale climate variability, but explanations on the mecha...Previous studies have demonstrated that the low-frequency sea surface temperature(SST) variability in the Yellow Sea and East China Sea(YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio.The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux(downward positive)displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study,displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations,sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming.展开更多
文摘The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO. the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.
基金supported by the special climate change in 2010 of the China Meteorological Administration (No. ccfs-2010)the National Natural Science Foundation of China (No. 41275097)
文摘The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.
基金supported by the Special Climate Change Research Program of China Meteorological Administration (No. CCSF-09-11, CCSF-09-03, CCSF2011-25, and CCSF201211)the Science and Technology Planning Project of Guangdong province (No.2011A030200021)
文摘Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.
文摘The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.
基金supported by the National Natural Science Foundation of China under Grant Nos. 90711004 and 40775053"One Hundred Talent Plan" of the Chinese Academy of Sciences
文摘Since no consensus has been reached in previous studies about how the summer climate in China will evolve in the first half of the 21st century, this issue is addressed here through sensitivity experiments by forcing an atmospheric general circulation model (AGCM), the Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmospheric Model Version 2.0 (AM2) with projected sea surface temperature (SST) trend. A total of two SST trends from the Intergovernmental Panels on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) AlB are used. The two trends are from two coupled climate system models, the National Center for Atmospheric Research (NCAR) Community Climate System Model Version 3.0 (CCSM3) and the GFDL Climate Model Version 2.0 (CM2), respectively. Results consistently suggest a substantial warming and drying trend over much of China, with a surface air temperature increase of 1.0-2.0℃ and a 10%-20% decrease in rainfall. Exceptions are the areas from northwestern China to western North China as well as the southern Tibetan Plateau, which are projected to be wetter with a rainfall anomaly percentage increase of 10%-50%. The drying in eastern North China has not been documented to date but appears to be reasonable. Physically, it is attributed to anomalous northeasterly winds at the rear of a low-level cyclone over the South China Sea, the Philippines and the subtropical western North Pacific. These conditions, which govern the climate of eastern China, are forced by the northward shift of convection over warm waters due to additional warming.
文摘Climate change is a challenge faced by the whole humanity.As the world's largest developing country, China attaches great importance to climate change and has taken effective measures to address climate change issues despite its tremendous task to develop economy, eliminate poverty and improve people's livelihood.
文摘Global climate change is real and already taking place. The most recent Fifth Assessment Report of the Intergov- ernmental Panel on Climate Change (IPCC AR5) stated that global land and ocean surface temperature increased by 0.85℃ over the period of 1880 to 2012 (IPCC Climate Change 2013). China is among the most affected countries by global climate change.
文摘The author discusses the subject in both ecological and political perspectives based on a most comprehensive,authoritative and updated bibliography.Hence,Latin America and the Caribbean(LAC) is as much diversified as there are sub-regions and regional organizations in geopolitical and geo-economical terms and often dialectic regarding energy security,climate change and LAC ties with Europeans and China and so is the tripartite relations with the rest of the world so far as energy security and climate cha...
基金Supported by Chongqing Municipal Frontiers and Application Base Research Program,China(cstc2014jcyjA 20002)Chongqing Municipal Key Laboratory of Institutions of Higher Education,China(WEPKL2013MS-10)Innovation Planning Project for University Students of Chongqing Three Gorges University,China(2014-56)
文摘Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice growth period in Liangping County,and analyzed its climate tendency rate. Results showed that climate tendency rate of crop water requirement during growth period of rice was only- 0. 007 mm /10 a; climate tendency rate of rainfall was- 0. 06 mm /10 a,but interannual change was relatively larger; climate tendency rate of net irrigation water requirement was 0. 011 mm /10 a. In the years when drought occurred,such as 2006 and 2011,both rice water requirement and net irrigation water requirement in Liangping were greatly higher than means over the years. Therefore,we should focus on drought pre-warning and risk management improving drought disaster prevention in Liangping in the future.
基金Supported by National Natural Science Foundation of China(31300376)Natural Science Foundation of Gansu Province(1208RJYA025)
文摘In this paper,land surface observation data at semi-arid climate and environmental observation station( SACOL station) of Lanzhou University during 2006- 2012 and the data of Yuzhong meteorological station were used to analyze the responses of land surface radiation budget components to climate fluctuation,study the interannual variability of surface albedo,and discuss the feedback of various land surface process parameters on the interannual fluctuations of temperature and precipitation in Loess Plateau. According to the type of precipitation in Loess Plateau,the year was divided into winter and summer in order to get more significant interannual variability and correlation. The results showed that the trends of temperature and precipitation during 2006- 2012 were consistent with the warming and drying total trend in recent years in Loess Plateau. Shallow surface soil moisture and temperature showed a good response to temperature and precipitation,and the annual variation of summer half year had greater impact on the trend in the whole year. Incident solar radiation increase was major reason for climate warming in the Loess Plateau region.The combined effect of climatic factors was the reason for the change of surface albedo. Through the distinguish inquiry by winter and summer data,it was obtained that most correlations between summer radiation components and climatic factors have been improved,and partial correlations between winter radiation components and climatic factors have been increased.
基金Supported by the Fundamental Research Funds for the Central Universities(SKZZX2013054)
文摘How many NGOs were there in the climate change field in the United States? Who were they? And what was the relationship between them? In the United States,climate change was only a branch of environmental issues at the beginning; therefore there were no specific quantitative statistics and network analysis of NGOs in climate change. Diversity was an important feature of NGOs in American climate change fields,and it showed a complex organizational ecology through varieties of networks and interaction among organizations. In order to make a difference in climate field,Chinese NGOs firstly needed to improve and enhance their own abilities.
基金supported by the National Natural Science Foundation of China(Grant No.42275184)the National Key Research and Development Program of China(Grant No.2017YFA0603804)the Postgraduate Research and Practice Innovation Program of Government of Jiangsu Province(Grant No.KYCX22_1135).
文摘Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,their efficiency varies and inter-comparison is a challenging task,as they use a variety of target variables,geographic regions,time periods,or model pools.Here,we construct and use a consistent framework to evaluate the performance of five ensemble-processing methods,i.e.,multimodel ensemble mean(MME),rank-based weighting(RANK),reliability ensemble averaging(REA),climate model weighting by independence and performance(ClimWIP),and Bayesian model averaging(BMA).We investigate the annual mean temperature(Tav)and total precipitation(Prcptot)changes(relative to 1995–2014)over China and its seven subregions at 1.5 and 2℃warming levels(relative to pre-industrial).All ensemble-processing methods perform better than MME,and achieve generally consistent results in terms of median values.But they show different results in terms of inter-model spread,served as a measure of uncertainty,and signal-to-noise ratio(SNR).ClimWIP is the most optimal method with its good performance in simulating current climate and in providing credible future projections.The uncertainty,measured by the range of 10th–90th percentiles,is reduced by about 30%for Tav,and 15%for Prcptot in China,with a certain variation among subregions.Based on ClimWIP,and averaged over whole China under 1.5/2℃global warming levels,Tav increases by about 1.1/1.8℃(relative to 1995–2014),while Prcptot increases by about 5.4%/11.2%,respectively.Reliability of projections is found dependent on investigated regions and indices.The projection for Tav is credible across all regions,as its SNR is generally larger than 2,while the SNR is lower than 1 for Prcptot over most regions under 1.5℃warming.The largest warming is found in northeastern China,with increase of 1.3(0.6–1.7)/2.0(1.4–2.6)℃(ensemble’s median and range of the 10th–90th percentiles)under 1.5/2℃warming,followed by northern and northwestern China.The smallest but the most robust warming is in southwestern China,with values exceeding 0.9(0.6–1.1)/1.5(1.1–1.7)℃.The most robust projection and largest increase is achieved in northwestern China for Prcptot,with increase of 9.1%(–1.6–24.7%)/17.9%(0.5–36.4%)under 1.5/2℃warming.Followed by northern China,where the increase is 6.0%(–2.6–17.8%)/11.8%(2.4–25.1%),respectively.The precipitation projection is of large uncertainty in southwestern China,even with uncertain sign of variation.For the additional half-degree warming,Tav increases more than 0.5℃throughout China.Almost all regions witness an increase of Prcptot,with the largest increase in northwestern China.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41671037 & 41301091)the National Key Research and Development Program of China (Grant No. 2016YFA0602402)the Youth Innovation Promotion Association, CAS (Grant No. 2016049)
文摘Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attempts to adapt to climate change. Due to a lack of records based on continuous long-term observation, studies on changes in multiple consecutive phenological stages throughout a whole growing season on a national scale are rarely found, especially with regard to the spatiotemporal differentiation of phenological changes. Using a long-term dataset(1981-2010) of wheat phenology collected from 48 agro-meteorological stations in China, we qualified the spatiotemporal changes of 10 phenological stages as well as the length of wheat growth phases. Results showed that climate and wheat phenology changed significantly during the growing seasons from 1981 to 2010. On average, on a national scale, dates of sowing(0.19 d a-1), emergence(0.06 d a-1), trefoil(0.05 d a-1), and milk ripe(0.06 d a-1) showed a delaying trend, whereas dates of tillering(-0.02 d a-1), jointing(-0.15 d a-1),booting(-0.21 d a-1), heading(-0.17 d a-1), anthesis(-0.19 d a-1), and maturity(-0.10 d a-1) showed an advancing trend.Furthermore, the vegetative growth phase and growing season were shortened by 0.23 and 0.29 d a-1, respectively, whereas the reproductive growth phase was lengthened by 0.06 d a-1. Trends in dates of phenological stages or length of growing phases varied across wheat-planting regions. Moreover, spatiotemporal differentiation of sensitivity in growing season length(GSL) to variations in climatic factors during the growing season between spring and winter wheat were remarkable. The GSL of spring(winter) wheat decreased(increased) with an increase in average temperature during the growing season. In all wheat-planting regions, the GSL increased with the increasing of total precipitation and sunshine duration during the growing season. In particular, the sensitivity of GSL to precipitation for spring wheat was weaker than for winter wheat, while the sensitivity of GSL to sunshine duration for spring wheat was stronger than for winter wheat. Recognition of the spatiotemporal differentiation of phenological changes and their response to various climatic factors will provide scientific support for decision-making in agricultural production.
文摘Based on the data of monthly mean air temperature and precipitation from about 400 stations in 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,total cloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered days and depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961 —1995.the climate change and its characteristics in China in recent 45 years have been analyzed and studied comprehensively.This paper,as the first part of the work.has analyzed the climate change and regularities of such meteorological elements as mean air temperature,maximum and minimum air temperatures,precipitation,relative humidity and sunshine duration.The possible mechanism on climate change in China and the climate change and regularities of other meteorological elements will be discussed in another paper as the second part.
基金National Basic Research Program of China (Grant No. 2012CB956203)the China Meteorological Administration R&D Special Fund for Public Welfare (Meteorology) (Grant No. GYHY201306027)+1 种基金the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (Grant No. PAEKL-2015-C1)the National Science Foundation of China (Grant No. 41405090)
文摘Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic aerosols(AAs), and land use(LU)) and external natural forcings(Nat) to climate changes in China over the past 50 years were quantified. Both anthropogenic and external natural forcings account for 95%–99% of the observed temperature change from 1951–1975 to 1981–2005. In particular, the temperature changes induced by GHGs are approximately 2–3 times stronger than the observed changes, and AAs impose a significant cooling effect. The total external forcings can explain 65%–78% of the observed precipitation changes over the past 50 years, in which AAs and GHGs are the primary external forcings leading to the precipitation changes; in particular, AAs dominate the main spatial features of precipitation changes in eastern China. Human activities also dominate the long-term non-linear trends in observed temperature during the past several decades, and, in particular, GHGs, the primary warming contributor, have produced significant warming since the 1960 s. Compared to the long-term non-linear trends in observed precipitation, GHGs have largely caused the wetting changes in the arid-semiarid region since the 1970 s, whereas AAs have led to the drying changes in the humid-semihumid region; both LU and Nat can impose certain impacts on the long-term non-linear trends in precipitation. Using the optimal fingerprinting detection approach, the effects of human activities on the temperature changes can be detected and attributed in China, and the effect of GHGs can be clearly detected from the observations in humid-semihumid areas. However, the anthropogenic effects cannot be detected in the observed precipitation changes, which may be due to the uncertainties in the model simulations and to other issues. Although some results in this paper still need improvement due to uncertainties in the coupled models, this study is expected to provide the background and scientific basis for climate changes to conduct vulnerability and risk assessments of the ecological systems and water resources in the arid-semiarid region of China.
基金supported by the National Natural Science Foundation of China (Grant No.71390525)
文摘Infrastructure systems play a fundamental role in reducing greenhouse gas(GHG)emissions to avert global climate change(Kennedy et al.,2014).Transportations are recognized as one of the key factors for facilitating climate change mitigation(Shaw et al.,2014).Approximately 19%of global energy consumption and 23%of energy-related carbon dioxide(CO2)emissions come from the transportation sector(IEA,2012).The demands are still increasing at an annual average rate of 1.4%(EIA,2016).Scholars
文摘The dynamics of agricultural and forestry biomass are highly sensitive to climate change, particularly in high latitude regions. Heilongjiang Province was selected as research area in North-east China. We explored the trend of regional climate warming and distribution feature of biomass resources, and then analyzed on the spatial relationship between climate factors and biomass resources. Net primary productivity (NPP) is one of the key indicators of vegetation productivity, and was simulated as base data to calculate the distribution of agricultural and forestry biomass. The results show that temperatures rose by up to 0.37℃/10a from 1961 to 2013. Spatially, the variation of agricultural biomass per unit area changed from -1.93 to 5.85 t.km^-2.a^-1 during 2000,2013. More than 85% of farmland areas showed a positive relationship be.tween agricultural biomass and precipitation. The results suggest that precipitation exerts an overwhelming climate influence on agricultural biomass. The mean density of forestry biomass varied from 10 to 30 t·km^-2. Temperature had a significant negative effect on forestry biomass in Lesser Khingan and northern Changbai Mountain, because increased temperature leads to decreased Rubisco activity and increased respiration in these areas. Precipitation had a significant positive relationship with forestry biomass in south-western Changbai Mountain, because this area had a wanner climate and stress from insufficient precipitation may induce xylem cavitation. Understanding the effects of climate factors on regional biomass resources is of great significance in improving environmental management and promoting sustainable development of further biomass resource use.
基金Supported by Science Research Item of Hubei Environmental Protection Agency,China(2013HB03)
文摘According to the latest research of ecosystem service( ES),the background and connotation of ecosystem services were briefly summarized,the relationship among human activity,climate change,and biodiversity and ecosystem service function( ESF) was synthetically analyzed,the research trends of ecosystem services function assessment( ESFA) were discussed from multi-scale,and the perspectives was given based on the past studies. The ecological long-term location monitoring method based on the ESFA should be studied,evaluation index of ESFA should be further improved,and the ESF research on the arid region should be reinforced.
基金supported by the the National Natural Science Foundation of China (Grant Nos. 41690120, 41690121, 41621064, 91528304 & 41476021)the National Program on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-04)+1 种基金the National Basic Research Program (Grant No. 2013CB430302)the Scientific Research Fund of the Second Institute of Oceanography (Grant No. JG1501)
文摘Previous studies have demonstrated that the low-frequency sea surface temperature(SST) variability in the Yellow Sea and East China Sea(YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio.The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux(downward positive)displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study,displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations,sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming.