Based on Chinese soil loss equation (CSLE) model, this paper utilized technical advantages of RS and geographic information system (GIS) on data access and erosion factors database building to study prediction met...Based on Chinese soil loss equation (CSLE) model, this paper utilized technical advantages of RS and geographic information system (GIS) on data access and erosion factors database building to study prediction methods of regional soil erosion. The spatial analysis module of ARCGIS platform was applied to study the spatial distribution of erosion and the inter-relations of the factors influencing regional soil erosion in the research area. As a result, the mean soil erosion modulus of Bin County is 3 555.42 t/(km^2.a), which suggests moderate degree erosion. The mean soil erosion modulus of clayey meadow soil is higher than those of dark brown soil and black soil. Vegetation factor values are between 0.1-0.2. The mean slope gradient and slope length values are respectively 1.335 and 6.061 which shows slope length is a dominant factor. And soil type, vegetation coverage and topographic factors have remarkable relevance to each other. Therefore, RS, GIS and CSLE are applicable in regional scale to disclose spatial distribution characteristics of soil erosion and to analyze the characteristics of dominant soil erosion factor quantitatively.展开更多
Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Be...Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River is closely related to silting of the upper reaches of the Yellow River, it is necessary to assess erosion risk in this watershed. This study aims to identify the soil-erosion risk caused by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River from 2ool to aOlO. Empirical models called Chinese Soil Loss Equation (CSLE) and Modified Universal Soil Loss Equation (MUSLE) were used to predict the erosion modulus in slope surfaces and gullies. Then the soil erosion risk in this watershed was assessed according to the classification criteria of soil erosion intensities (SL19o-2oo7). The study results showed that the range of values of the erosion modulus in this watershed was o-44,733 t/km2/a. More than 20% of the total watershed area was found to present an erosion risk, with the regions at risk mainly located in channels and their upper reaches, and in mountainous areas. To determine the regression coefficients of the erosion factors with respect to erosion modulus, a GWR (geographically weighted regression) was carried out using the ArcGIS software. It was found that the topographic factor has the highest contribution rate to the soil erosion modulus, while the highest contribution rate of the erosion factors to the erosion modulus and the largest values of the factors were not located in the same places. Based on this result, the authors propose that slope management is the most important task in preventing soil loss in this watershed, and the soil- conservation projects should be built according to the eontribution rate of the erosion factors.展开更多
基金the National Basic Research Program of China (973 Program)(2007CB407204)
文摘Based on Chinese soil loss equation (CSLE) model, this paper utilized technical advantages of RS and geographic information system (GIS) on data access and erosion factors database building to study prediction methods of regional soil erosion. The spatial analysis module of ARCGIS platform was applied to study the spatial distribution of erosion and the inter-relations of the factors influencing regional soil erosion in the research area. As a result, the mean soil erosion modulus of Bin County is 3 555.42 t/(km^2.a), which suggests moderate degree erosion. The mean soil erosion modulus of clayey meadow soil is higher than those of dark brown soil and black soil. Vegetation factor values are between 0.1-0.2. The mean slope gradient and slope length values are respectively 1.335 and 6.061 which shows slope length is a dominant factor. And soil type, vegetation coverage and topographic factors have remarkable relevance to each other. Therefore, RS, GIS and CSLE are applicable in regional scale to disclose spatial distribution characteristics of soil erosion and to analyze the characteristics of dominant soil erosion factor quantitatively.
基金financially supported by the National Key Basic Research Program of China (Grant No. 2011CB403306)the Foundation for Excellent Youth Scholars of CAREERI, CAS (Y451201001)the National Natural Science Foundation of China (http://westdc.westgis.ac.cn)
文摘Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River is closely related to silting of the upper reaches of the Yellow River, it is necessary to assess erosion risk in this watershed. This study aims to identify the soil-erosion risk caused by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River from 2ool to aOlO. Empirical models called Chinese Soil Loss Equation (CSLE) and Modified Universal Soil Loss Equation (MUSLE) were used to predict the erosion modulus in slope surfaces and gullies. Then the soil erosion risk in this watershed was assessed according to the classification criteria of soil erosion intensities (SL19o-2oo7). The study results showed that the range of values of the erosion modulus in this watershed was o-44,733 t/km2/a. More than 20% of the total watershed area was found to present an erosion risk, with the regions at risk mainly located in channels and their upper reaches, and in mountainous areas. To determine the regression coefficients of the erosion factors with respect to erosion modulus, a GWR (geographically weighted regression) was carried out using the ArcGIS software. It was found that the topographic factor has the highest contribution rate to the soil erosion modulus, while the highest contribution rate of the erosion factors to the erosion modulus and the largest values of the factors were not located in the same places. Based on this result, the authors propose that slope management is the most important task in preventing soil loss in this watershed, and the soil- conservation projects should be built according to the eontribution rate of the erosion factors.