期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Out of Witchcraft to Zhuyou:Healing by Prayer
1
作者 Ruikang Yuan Yajun Li 《Journal of Clinical and Nursing Research》 2021年第6期53-55,共3页
Zhuyou is one of the methods to treat diseases in ancient China.It is controversial in modern times because of its mysterious form.Based on the observation and analysis of literature records as well as the folk custom... Zhuyou is one of the methods to treat diseases in ancient China.It is controversial in modern times because of its mysterious form.Based on the observation and analysis of literature records as well as the folk customs of traditional Chinese medicine,this article discusses the methods of treating herpes zoster and nocturnal fretfulness in infants by using Zhuyou,with a purpose to summarize its therapeutic mechanism and principle,while taking its essence to make use of the past to serve the present. 展开更多
关键词 Traditional chinese medicine literature Zhuyou Healing by prayer Herpes zoster Nocturnal fretfulness in infants
下载PDF
Text Mining and Analysis of Treatise on Febrile Diseases Based on Natural Language Processing 被引量:2
2
作者 Kai Zhao Na Shi +3 位作者 Zhen Sa Hua-Xing Wang Chun-Hua Lu Xiao-Ying Xu 《World Journal of Traditional Chinese Medicine》 2020年第1期67-73,共7页
Objective:With using natural language processing (NLP) technology to analyze and process the text of "Treatise on Febrile Diseases (TFDs)"for the sake of finding important information, this paper attempts to... Objective:With using natural language processing (NLP) technology to analyze and process the text of "Treatise on Febrile Diseases (TFDs)"for the sake of finding important information, this paper attempts to apply NLP in the field of text mining of traditional Chinese medicine (TCM)literature. Materials and Methods:Based on the Python language, the experiment invoked the NLP toolkit such as Jieba, nltk, gensim,and sklearn library, and combined with Excel and Word software. The text of "TFDs" was sequentially cleaned, segmented, and moved the stopped words, and then implementing word frequency statistics and analysis, keyword extraction, named entity recognition (NER) and other operations, finally calculating text similarity. Results:Jieba can accurately identify the herbal name in "TFDs." Word frequency statistics based on the word segmentation found that "warm therapy" is an important treatment of "TFDs." Guizhi decoction is the main prescription,and five core decoctions are identified. Keyword extraction based on the term "frequency-inverse document frequency" algorithm is ideal.The accuracy of NER in "TFDs" is about 86%;latent semantic indexing model calculating the similarity,"Understanding of Synopsis of Golden Chamber (SGC)" is much more similar with "SGC" than with "TFDs." The results meet expectation. Conclusions:It lays a research foundation for applying NLP to the field of text mining of unstructured TCM literature. With the combination of deep learning technology,NLP as an important branch of artificial intelligence will have broader application prospective in the field of text mining in TCM literature and construction of TCM knowledge graph as well as TCM knowledge services. 展开更多
关键词 Knowledge discovery natural language processing text mining traditional chinese medicine literature treatise on febrile diseases
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部