期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015 被引量:1
1
作者 张文霞 刘普幸 +2 位作者 冯青荣 汪天广 王天强 《Journal of Geographical Sciences》 SCIE CSCD 2018年第5期579-594,共16页
Daily average temperature data from 48 meteorological stations in Chinese oases that are within the distribution area of Populus euphratica were analyzed to determine the spatiotemporal responses of this tree to clima... Daily average temperature data from 48 meteorological stations in Chinese oases that are within the distribution area of Populus euphratica were analyzed to determine the spatiotemporal responses of this tree to climate change. Specifically, the start and end date as well as the number of days that comprised the growing season were analyzed with a multi-year trend line and using the Mann-Kendall mutation test, inverse distance weighted interpolation(IDW) in the software Arc GIS, a Morlet wavelet power spectrum, and correlation analysis. The results of this study show that, over the last 56 years, the start date of the P. euphratica growing season has advanced, while the end date has been postponed, and the number of days that comprise the growing season have gradually increased. The changing trend rates recovered in this analysis for these three time slices are –1.34 d/10 a, 1.33 d/10 a, and 2.66 d/10 a(α ≥ 0.001), respectively. Data show that while spatial disparity is extremely significant, it is nevertheless the case that along a southwest-to-northeast transect of Chinese oases, the later the start date of the P. euphratica season, the sooner the end data and the shorter the growing season. Mutations points in start and end date, as well as for the growing season overall were observed in 2001, 1989, and 1996, respectively, and the data presented in this paper show that, in particular, the date of this end of this period is most sensitive to climate warming. Growing season cycles for P. euphratica are between 3.56 years and 7.14 years, consistent with the periodicity of El Ni?o events, while a start date cycle between 3.56 years and 4.28 years is consistent with atmospheric circulation cyclicity. The causal analysis presented in this paper shows that the Asian polar vortex area index(APVAI), the Qinghai-Tibet Plateau index(TPI), the westerly circulation index(WCI), and carbon dioxide emissions(CDE) are the main factors influencing spatiotemporal changes in the growth of P. euphratica, the effect of latitude during the growing season is more significant than altitude, and the start date of the growing season is more significantly influenced by these factors than end date. In addition, data show that the start date, end date, and length of the growing season are all significantly correlated with their average corresponding monthly temperature(corre-lation coefficients are –0.875, 0.770, and 0.897; α≥0.001). Thus, if the average temperature in March increases by 1℃, the start date of the growing season will advance by 2.21 days, while if the average temperature in October increases by the same margin then the seasonal end date will be delayed by 2.76 days. Similarly, if the average temperature between March and October increases by 1℃, the growing season will be extended by 7.78 days. The results of this study corroborate the fact that changes in the P. euphratica growing are sensitive to regional warming and are thus of considerable theoretical significance to our understanding of the responses of Chinese vegetation to climate change as well as to ecological restoration. 展开更多
关键词 Populus euphratica annual growing season global warming responses to climate change chinese oases
原文传递
Causes and effects of spatial and temporal variations of cold period in Chinese oases between 1960 and 2014
2
作者 柴中华 刘普幸 《Journal of Geographical Sciences》 SCIE CSCD 2016年第12期1647-1660,共14页
Based on daily average temperatures and observation data from 74 meteorological stations in Chinese oases, we calculate five-day(pentad) average temperature ≤0℃ for the start and end pentad as well as pentads of c... Based on daily average temperatures and observation data from 74 meteorological stations in Chinese oases, we calculate five-day(pentad) average temperature ≤0℃ for the start and end pentad as well as pentads of cold period using linear regression analysis, nonparametric Mann-Kendall tests, the Morlet wavelet power spectrum, and correlation analysis. We also analyze spatial and temporal variations and their effects on the start and end pentad as well as pentads of cold period in Chinese oases. Results show that over the last 55 years, the start pentad of cold period has been postponed while the end pentad has been advanced. Overall, the pentads have gradually shortened over time at trend rates that are 0.3 p/10 a, –0.27 p/10 a, and –0.58 p/10 a, respectively. Spatial differences are significant, especially for the Qaidam Basin oasis where the start pentad is the earliest, the end pentad is the latest, and the trend of change is most obvious. Mutation points for the start and end pentad as well as pentads of cold period were observed in 1990, 1998, and 1994, respectively. Of these, the start pentad and pentads of cold period show a periodic cycle, related to atmospheric circulation and El Nino events, while the end pentad exhibits a periodic cycle, related to solar activity. The Tibetan Plateau index(TPI), the Asian polar vortex area index(APVAI), and carbon dioxide emissions(CDE) are the main factors affecting cold period in the study area, whereas the South Asian summer monsoon(SASM) index exerts the greatest effect on the Qaidam Basin oasis. The start and end pentad as well as pentads of cold period increase in concert with latitude, longitude, and altitude; in response to these changes, the start pentad is advanced, the end pentad is postponed, and pentads of cold period are gradually extended. Results show that change in latitude is most significant. Overall, the start and end pentad as well as pentads of cold period show clear responses to regional warming, but there are different effects on each. 展开更多
关键词 chinese oases pentad average temperature influencing factor regional warming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部