The present study aims at valorizing two residues types of the foodless vegetable biomass which are abundant and very pollutant in Burkina Faso. To do it, first we try to identify the optimal values of chipboard elabo...The present study aims at valorizing two residues types of the foodless vegetable biomass which are abundant and very pollutant in Burkina Faso. To do it, first we try to identify the optimal values of chipboard elaboration parameters with kenaf and cotton stems by using a natural binder (the bone glue). Next we proceed to the elaboration of two panels types with optimized elaboration parameters. Besides we determine mechanical and thermal characteristics of elaborated panels with a view of an indoor thermal insulation application. Also it becomes necessary for us to determine by experimenting the thermal conductivity, Young’s modulus, Coulomb’s modulus, and the water inflation rate, taking into account some elaboration parameters on one hand and the correlation between mechanical and thermal properties on the other hand. Finally, the obtained results are compared with the panels properties values required by ANSI A 208.1-1999 standard.展开更多
In order to recommend the use of the masonry of chipboards with eviscerated bed joints and hollow vertical joints, we did a comparative study using simulation of the behavior of walls with traditional blocs and those ...In order to recommend the use of the masonry of chipboards with eviscerated bed joints and hollow vertical joints, we did a comparative study using simulation of the behavior of walls with traditional blocs and those of the new model of blocs. Thus, using Solidworks, we built up walls of 2.40 m length and 1.30m height following strictly the real constraints of elevation. Using finite elements method, the meshing, loading and the observation of the behavior are done through CosmosWorks. We can define a study used by Solidworks and Cosmos Works interface, and introduce parameters of walls;the meshing is then done (here we have volumic elements with three noses);then the big rigidity matrix is defined;the equations are also defined and solved and results are presented in numerical and graphical form. Since that form of results is not easy to analyse, we passed them to MATLAB in order to have usual curves more easily to analyse. The difficulty here is based on the conception of geometry of piece which must have same constraints and dimensions corresponding exactly to the real model. The other difficulty is to define parameters to use for a heterogeneous material like masonry. Once those difficulties are solved, the logical follows fully the steps of finite elements method until the solution in terms of noses repartition constraints, displacements and deformations. Then, we simulated the behavior on vertical static load, vertical static load and horizontal applied load and composed loads (vertical and horizontal) which are real conditions generally known in masonry walls. It has been shown that the new kind of masonry has a better behavior than the traditional one when loaded in its plan;in contrary, the behavior is less when loaded in the perpendicular plan.展开更多
文摘The present study aims at valorizing two residues types of the foodless vegetable biomass which are abundant and very pollutant in Burkina Faso. To do it, first we try to identify the optimal values of chipboard elaboration parameters with kenaf and cotton stems by using a natural binder (the bone glue). Next we proceed to the elaboration of two panels types with optimized elaboration parameters. Besides we determine mechanical and thermal characteristics of elaborated panels with a view of an indoor thermal insulation application. Also it becomes necessary for us to determine by experimenting the thermal conductivity, Young’s modulus, Coulomb’s modulus, and the water inflation rate, taking into account some elaboration parameters on one hand and the correlation between mechanical and thermal properties on the other hand. Finally, the obtained results are compared with the panels properties values required by ANSI A 208.1-1999 standard.
文摘In order to recommend the use of the masonry of chipboards with eviscerated bed joints and hollow vertical joints, we did a comparative study using simulation of the behavior of walls with traditional blocs and those of the new model of blocs. Thus, using Solidworks, we built up walls of 2.40 m length and 1.30m height following strictly the real constraints of elevation. Using finite elements method, the meshing, loading and the observation of the behavior are done through CosmosWorks. We can define a study used by Solidworks and Cosmos Works interface, and introduce parameters of walls;the meshing is then done (here we have volumic elements with three noses);then the big rigidity matrix is defined;the equations are also defined and solved and results are presented in numerical and graphical form. Since that form of results is not easy to analyse, we passed them to MATLAB in order to have usual curves more easily to analyse. The difficulty here is based on the conception of geometry of piece which must have same constraints and dimensions corresponding exactly to the real model. The other difficulty is to define parameters to use for a heterogeneous material like masonry. Once those difficulties are solved, the logical follows fully the steps of finite elements method until the solution in terms of noses repartition constraints, displacements and deformations. Then, we simulated the behavior on vertical static load, vertical static load and horizontal applied load and composed loads (vertical and horizontal) which are real conditions generally known in masonry walls. It has been shown that the new kind of masonry has a better behavior than the traditional one when loaded in its plan;in contrary, the behavior is less when loaded in the perpendicular plan.