A cholesterol-based organogelator bearing an anthraquinone imide (AQI) group was synthesized and characterized. It self-assembled into chiral gels in acetonitrile at low concentrations, which displayed a combination...A cholesterol-based organogelator bearing an anthraquinone imide (AQI) group was synthesized and characterized. It self-assembled into chiral gels in acetonitrile at low concentrations, which displayed a combination of electrochromic and chiroptical properties. Upon electrochemical reduction at -700 mV, the gel exhibited new absorption bands at around 820 nm corresponding to n*-z* (SOMO---~LUMO) transitions of the radical anion of AQI and strong negative Cotton effects in the same spectral region. With further reduction at -1000 mY, a new CD band with a negative Cotton effect in the range from 500 nm to 800 nm appeared concomitant with the variation of absorption spectrum. Thus, with the use of electrochromic AQI chromophore as a switch-responsive unit and the stable gel of compound N-[3fl-cholest- 5-en-3-yl N-(2-aminoethyl) carbamate] anthraquinone-2,3-dicarboxylic imide as a chiral scaffold, a redox-triggered chiroptical switch operating in visible and near-infrared region was realized.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.20674001,20325415, 20834001)the Research Fund for Doctoral Program of Higher Education of MOE of China(No.20060001029)
文摘A cholesterol-based organogelator bearing an anthraquinone imide (AQI) group was synthesized and characterized. It self-assembled into chiral gels in acetonitrile at low concentrations, which displayed a combination of electrochromic and chiroptical properties. Upon electrochemical reduction at -700 mV, the gel exhibited new absorption bands at around 820 nm corresponding to n*-z* (SOMO---~LUMO) transitions of the radical anion of AQI and strong negative Cotton effects in the same spectral region. With further reduction at -1000 mY, a new CD band with a negative Cotton effect in the range from 500 nm to 800 nm appeared concomitant with the variation of absorption spectrum. Thus, with the use of electrochromic AQI chromophore as a switch-responsive unit and the stable gel of compound N-[3fl-cholest- 5-en-3-yl N-(2-aminoethyl) carbamate] anthraquinone-2,3-dicarboxylic imide as a chiral scaffold, a redox-triggered chiroptical switch operating in visible and near-infrared region was realized.