We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to t...Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.展开更多
Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising met...Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.展开更多
We demonstrate a high-quality cross-polarized-wave filter based on spectral phase modulation. Driven by Well- eompressed spectral-phase fully-compensated fundamental laser lmlses, the filter stretches the pulse bandwi...We demonstrate a high-quality cross-polarized-wave filter based on spectral phase modulation. Driven by Well- eompressed spectral-phase fully-compensated fundamental laser lmlses, the filter stretches the pulse bandwidth from 35 nm to 7Ohm with a conversion efficeiency of 20%.展开更多
In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher ...In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent(SPGD)algorithm,a maximum average power of 265 W is obtained,with a CBC efficiency of 81%and a residual phase error of λ/17.After de-chirping by a pair of diffraction gratings,the duration of the combined laser pulse is compressed to 690 fs.Taking into account the compression efficiency of 90%and the main peak energy proportion of 91%,the corresponding peak power is calculated to be 4 MW.The laser noise characteristics before and after CBC are examined,and the results indicate that the CBC would degrade the low frequency relative intensity noise(RIN),of which the integration is 1.74%in[100 Hz,2 MHz]at the maximum combined output power.In addition,the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated,showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.展开更多
High-power ultrafast laser amplification based on a non-polarization maintaining fiber chirped pulse amplifier is demonstrated.The active polarization control technology based on the root-mean-square propagation(RMS-p...High-power ultrafast laser amplification based on a non-polarization maintaining fiber chirped pulse amplifier is demonstrated.The active polarization control technology based on the root-mean-square propagation(RMS-prop)algorithm is employed to guarantee a linearly polarized output from the system.A maximum output power of 402.3 W at a repetition rate of 80 MHz is realized with a polarization extinction ratio(PER)of>11.4 dB.In addition,the reliable operation of the system is verified by examining the stability and noise properties of the amplified laser.The M2factor of the laser beam at the highest output power is measured to be less than 1.15,indicating a diffraction-limited beam quality.Finally,the amplified laser pulse is temporally compressed to 755 fs with a highest average power of 273.8 W.This is the first time,to the best of our knowledge,that the active polarization control technology was introduced into the high-power ultrafast fiber amplifier.展开更多
An all-fiber high-power linearly polarized chirped pulse amplification(CPA)system is experimentally demonstrated.Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fi...An all-fiber high-power linearly polarized chirped pulse amplification(CPA)system is experimentally demonstrated.Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fiber Bragg gratings(CFBGs),a maximum average output power of 612 W is achieved from a high-gain Yb-doped fiber that has a core diameter of 20μm with a slope efficiency of approximately 68%at the repetition rate of 80 MHz.At the maximum output power,the polarization degree is 92.5%and the M^(2)factor of the output beam quality is approximately 1.29;the slight performance degradations are attributed to the thermal effects in the main amplifier.By optimizing the B-integral of the amplifier and finely adjusting the higher-order dispersion of one of the CFBGs,the pulse width is compressed to 863 fs at the highest power with a compression efficiency of 72%,corresponding to a maximum compressed average power of 440.6 W,single pulse energy of 5.5μJ and peak power of about 4.67 MW.To the best of our knowledge,this is the highest average power of a femtosecond laser directly generated from an all-fiber linearly polarized CPA system.展开更多
It is well-known that the chirped pulse amplification(CPA) technique won the award for the 2018 Nobel Prize in Physics to Mourou and Strickland. The compression and stretching using gratings is the essence of the CPA ...It is well-known that the chirped pulse amplification(CPA) technique won the award for the 2018 Nobel Prize in Physics to Mourou and Strickland. The compression and stretching using gratings is the essence of the CPA technique for amplifying femtosecond laser pulses. It seems the public is less aware that there are also other structures for compression and stretching of femtosecond laser pulses using other diffractive gratings, such as doubled-density gratings and deep-etched gratings. Therefore, from the view of diffractive optics, the CPA technique is reviewed with different approaches and experimental implementations that are not only useful for a more comprehensive retrospective overview of CPA, but also for the prospective of the CPA technique,which might lead us to new areas of picometer and femtometer optics in the future.展开更多
A high-power all polarization-maintaining(PM) chirped pulse amplification(CPA) system operating in the 2.0 μm range is experimentally demonstrated.Large mode area(LMA) thulium-doped fiber(TDF) with a core/cladding di...A high-power all polarization-maintaining(PM) chirped pulse amplification(CPA) system operating in the 2.0 μm range is experimentally demonstrated.Large mode area(LMA) thulium-doped fiber(TDF) with a core/cladding diameter of25/400 μm is employed to construct the main amplifier.Through dedicated coiling and cooling of the LMA-TDF to manage the loss of the higher order mode and thermal effect,a maximum average power of 314 W with a slope efficiency of 52% and polarization extinction ratio of 20 dB is realized.The pulse duration is compressed to 283 fs with a grating pair,corresponding to a calculated peak power of 10.8 MW,considering the compression efficiency of 88% and the estimated Strehl ratio of 89%.Moreover,through characterizing the noise properties of the laser,an integrated relative intensity noise of 0.11% at 100 Hz-1 MHz is obtained at the maximum output power,whereas the laser timing jitter is degraded by the final amplifier from 318 to 410 fs at an integration frequency of 5 kHz to 1 MHz,owing to the self-phase modulation effect-induced spectrum broadening.The root-mean-square of long-term power fluctuation is tested to be0.6%,verifying the good stability of the laser operation.To the best of our knowledge,this is the highest average power of an ultrafast laser realized from an all-PM-fiber TDF-CPA system ever reported.展开更多
A novel tiled Ti:sapphire(Ti:S)amplifier was experimentally demonstrated with>1 J amplified chirped pulse output.Two Ti:S crystals having dimensions of 14 mm×14 mm×25 mm were tiled as the gain medium in a...A novel tiled Ti:sapphire(Ti:S)amplifier was experimentally demonstrated with>1 J amplified chirped pulse output.Two Ti:S crystals having dimensions of 14 mm×14 mm×25 mm were tiled as the gain medium in a four-pass amplifier.Maximum output energy of 1.18 J was obtained with 2.75 J pump energy.The energy conversion efficiency of the tiled Ti:S amplifier was comparable with a single Ti:S amplifier.The laser pulse having the maximum peak power of 28 TW was obtained after the compressor.Moreover,the influence of the beam gap on the far field was discussed.This novel tiled Ti:S amplifier technique can provide a potential way for 100 PW or EW lasers in the future.展开更多
In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core nume...In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250µm at the thin end and 56/400μm at the thick end.With a backward-pumping confguration,a maximum single pulse energy of 177.9μJ at a repetition rate of 504 kHz is realized,corresponding to an average power of 89.7 W.Through partially compensating for the accumulated nonlinear phase during the amplifcation process via adjusting the high order dispersion of the stretching chirped fber Bragg grating,the duration of the amplifed pulse is compressed to 401 fs with a pulse energy of 126.3μJ and a peak power of 207 MW,which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fber laser.At the highest energy,the polarization extinction ratio and the M2 factor were respectively measured to be~19 dB and 1.20.In addition,the corresponding intensity noise properties as well as the short-and long-term stability were also examined,verifying a stable operation of the system.It is believed that the demonstrated laser source could fnd important applications in,for example,advanced manufacturing and photomedicine.展开更多
We report on a grating-free fiber chirped pulse amplifier(CPA)at 2.8μm for the first time.The CPA system adopted Er:ZBLAN fiber with large anomalous dispersion as the stretcher and germanium(Ge)rods as the compressor...We report on a grating-free fiber chirped pulse amplifier(CPA)at 2.8μm for the first time.The CPA system adopted Er:ZBLAN fiber with large anomalous dispersion as the stretcher and germanium(Ge)rods as the compressor with a compact structure.High-energy picosecond pulses of 2.07μJ were generated at the repetition rate of 100 kHz.Using highly dispersive Ge rods,the amplified pulses were compressed to 408 fs with a pulse energy of 0.57μJ,resulting in a peak power of approximately 1.4 MW.A spectral broadening phenomenon in the main amplifier was observed,which was caused by the special gain shape of the Er:ZBLAN fiber amplifier in operation and confirmed by our numerical simulation.This compact fiber CPA system at 2.8μm will be practical and meaningful for application fields.展开更多
The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively. Through the qualitative investigation of the paraxial approximation condition, we show there are chirp-induced cha...The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively. Through the qualitative investigation of the paraxial approximation condition, we show there are chirp-induced changes in the nonparaxial propagation of the chirped pulsed beam. A quantitative nonparaxial correction was developed by use of the perturbational technic and the Fourier transform for a few-cycle chirped pulsed beam with relative small chirp parameter. It was shown that the nonparaxial corrections were enhanced near the leading or trailing edge of pulse depending on weather the chirp parameter is positive or negative. An example for pulsed Gaussian beam driven by a chirped Gaussian pulse is shown in the numerical result to confirm our analysis.展开更多
We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse ...We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse amplifier provides more than 10 mJ,approximately 1.2 ps pulses at 1030 nm to pump a three-stage optical parametric chirped pulse amplifier(OPCPA)based on bismuth borate crystals and to drive the supercontinuum seed in the YAG crystal.The energy of the amplified pulses in the wavelength range of 1.95–2.4μm reached 2.25 mJ with a pump-tosignal conversion efficiency of approximately 25%in the last OPCPA stage.These pulses were compressed to 38 fs in a pair of Suprasil 300 glass prisms.展开更多
A broadband instantaneous multi-frequency measurement system based on chirped pulse compression,which potentially has a sub-megahertz(MHz)accuracy and a hundred-gigahertz(GHz)measurement range,is demonstrated.A signal...A broadband instantaneous multi-frequency measurement system based on chirped pulse compression,which potentially has a sub-megahertz(MHz)accuracy and a hundred-gigahertz(GHz)measurement range,is demonstrated.A signalunder-test(SUT)is converted into a carrier-suppressed double-sideband(CS-DSB)signal,which is then combined with an optical linearly frequency-modulated signal having the sweeping range covering the+1 st-order sideband of the CSDSB signal.With photodetection,low-pass filtering,and pulse compression,accurate frequencies of the SUT are obtained via locating the correlation peaks.In the experiment,single-and multi-frequency measurements with a measurement range from 3 to 18 GHz and a measurement accuracy of<±100 MHz are achieved.展开更多
We demonstrate a high-contrast, joule-level Nd:glass laser system operating at 0.5 Hz repetition rate based on a double chirped pulse amplification(CPA) scheme. By injecting high-contrast, high-energy seed pulses into...We demonstrate a high-contrast, joule-level Nd:glass laser system operating at 0.5 Hz repetition rate based on a double chirped pulse amplification(CPA) scheme. By injecting high-contrast, high-energy seed pulses into the Nd:glass CPA stage, the pulse energy is amplified to 1.9 J through two optical parametric CPA stages and two Nd:glass amplifiers. The temporal contrast of compressed pulse is measured down to the level of 10^(-8)at tens of ps, and 10^(-10) near 200 ps before the main pulse, respectively.展开更多
This paper studies the interactions between two and more adjacent chirped soliton-like pulses, respectively. The results show that the pulses present strong interactions when the separations between them are smaller t...This paper studies the interactions between two and more adjacent chirped soliton-like pulses, respectively. The results show that the pulses present strong interactions when the separations between them are smaller than a certain value,and their behaviour is very distinct under different conditions,such as a different number of pulses or different initial separations between them.Furthermore,we also study the suppression of these interactions and obtain very good effects by using different initial amplitude ratios.展开更多
We present the performance of a high-power Nd:glass laser system,which produces a 1.1 J,250 fs,7.3 nm broadband laser pulse based on the combination of optical parametric amplification(OPA) and chirped pulse amplifica...We present the performance of a high-power Nd:glass laser system,which produces a 1.1 J,250 fs,7.3 nm broadband laser pulse based on the combination of optical parametric amplification(OPA) and chirped pulse amplification(CPA).The two-stage OPA provides broadband seed pulses for the three-stage Nd:glass amplifiers based on the technology of CPA.Compared to the conventional oscillator seed source,the most important advantage of such a seed source supplied by the two-stage OPA is that it possesses the capacities of broad bandwidth and high energy.展开更多
Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population tran...Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon △n=-1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results.展开更多
We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse a...We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金supported by Science and Technology Innovation Seedling Project of Sichuan Province,China(Grant No.2018100)Major Project of CDNU(Grant No.CS18ZDZ0511).
文摘Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378030 and 11127901)the National Basic Research Program of China(Grant No.2011CB808101)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922402the National Natural Science Foundation of China under Grant Nos 61575217 and 11434016+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant Nos KJZD-EW-L11-03 and QYZDJ-SSW-JSC006the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16030200
文摘We demonstrate a high-quality cross-polarized-wave filter based on spectral phase modulation. Driven by Well- eompressed spectral-phase fully-compensated fundamental laser lmlses, the filter stretches the pulse bandwidth from 35 nm to 7Ohm with a conversion efficeiency of 20%.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB3606000)in part by State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02).
文摘In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent(SPGD)algorithm,a maximum average power of 265 W is obtained,with a CBC efficiency of 81%and a residual phase error of λ/17.After de-chirping by a pair of diffraction gratings,the duration of the combined laser pulse is compressed to 690 fs.Taking into account the compression efficiency of 90%and the main peak energy proportion of 91%,the corresponding peak power is calculated to be 4 MW.The laser noise characteristics before and after CBC are examined,and the results indicate that the CBC would degrade the low frequency relative intensity noise(RIN),of which the integration is 1.74%in[100 Hz,2 MHz]at the maximum combined output power.In addition,the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated,showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.
基金supported by the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20220007)。
文摘High-power ultrafast laser amplification based on a non-polarization maintaining fiber chirped pulse amplifier is demonstrated.The active polarization control technology based on the root-mean-square propagation(RMS-prop)algorithm is employed to guarantee a linearly polarized output from the system.A maximum output power of 402.3 W at a repetition rate of 80 MHz is realized with a polarization extinction ratio(PER)of>11.4 dB.In addition,the reliable operation of the system is verified by examining the stability and noise properties of the amplified laser.The M2factor of the laser beam at the highest output power is measured to be less than 1.15,indicating a diffraction-limited beam quality.Finally,the amplified laser pulse is temporally compressed to 755 fs with a highest average power of 273.8 W.This is the first time,to the best of our knowledge,that the active polarization control technology was introduced into the high-power ultrafast fiber amplifier.
基金This work was supported by the National Natural Science Foundation of China(No.62005316)Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02).
文摘An all-fiber high-power linearly polarized chirped pulse amplification(CPA)system is experimentally demonstrated.Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fiber Bragg gratings(CFBGs),a maximum average output power of 612 W is achieved from a high-gain Yb-doped fiber that has a core diameter of 20μm with a slope efficiency of approximately 68%at the repetition rate of 80 MHz.At the maximum output power,the polarization degree is 92.5%and the M^(2)factor of the output beam quality is approximately 1.29;the slight performance degradations are attributed to the thermal effects in the main amplifier.By optimizing the B-integral of the amplifier and finely adjusting the higher-order dispersion of one of the CFBGs,the pulse width is compressed to 863 fs at the highest power with a compression efficiency of 72%,corresponding to a maximum compressed average power of 440.6 W,single pulse energy of 5.5μJ and peak power of about 4.67 MW.To the best of our knowledge,this is the highest average power of a femtosecond laser directly generated from an all-fiber linearly polarized CPA system.
基金supported by the Shanghai Science and Technology Committee (No. 19JC1415400)the National Key Research and Development Program of China(No. 2019YFF0216402)the Cutting-Edge Sciences Important Research Program,Chinese Academy of Sciences (No. QYZDJ-SSW-JSC014)。
文摘It is well-known that the chirped pulse amplification(CPA) technique won the award for the 2018 Nobel Prize in Physics to Mourou and Strickland. The compression and stretching using gratings is the essence of the CPA technique for amplifying femtosecond laser pulses. It seems the public is less aware that there are also other structures for compression and stretching of femtosecond laser pulses using other diffractive gratings, such as doubled-density gratings and deep-etched gratings. Therefore, from the view of diffractive optics, the CPA technique is reviewed with different approaches and experimental implementations that are not only useful for a more comprehensive retrospective overview of CPA, but also for the prospective of the CPA technique,which might lead us to new areas of picometer and femtometer optics in the future.
基金supported by the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20210015).
文摘A high-power all polarization-maintaining(PM) chirped pulse amplification(CPA) system operating in the 2.0 μm range is experimentally demonstrated.Large mode area(LMA) thulium-doped fiber(TDF) with a core/cladding diameter of25/400 μm is employed to construct the main amplifier.Through dedicated coiling and cooling of the LMA-TDF to manage the loss of the higher order mode and thermal effect,a maximum average power of 314 W with a slope efficiency of 52% and polarization extinction ratio of 20 dB is realized.The pulse duration is compressed to 283 fs with a grating pair,corresponding to a calculated peak power of 10.8 MW,considering the compression efficiency of 88% and the estimated Strehl ratio of 89%.Moreover,through characterizing the noise properties of the laser,an integrated relative intensity noise of 0.11% at 100 Hz-1 MHz is obtained at the maximum output power,whereas the laser timing jitter is degraded by the final amplifier from 318 to 410 fs at an integration frequency of 5 kHz to 1 MHz,owing to the self-phase modulation effect-induced spectrum broadening.The root-mean-square of long-term power fluctuation is tested to be0.6%,verifying the good stability of the laser operation.To the best of our knowledge,this is the highest average power of an ultrafast laser realized from an all-PM-fiber TDF-CPA system ever reported.
基金the National Key R&D Program of China(No.2017YFE0123700)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB1603)+2 种基金the National Natural Science Foundation of China(No.61925507)the Program of Shanghai Academic/Technology Research Leader(No.18XD1404200)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)。
文摘A novel tiled Ti:sapphire(Ti:S)amplifier was experimentally demonstrated with>1 J amplified chirped pulse output.Two Ti:S crystals having dimensions of 14 mm×14 mm×25 mm were tiled as the gain medium in a four-pass amplifier.Maximum output energy of 1.18 J was obtained with 2.75 J pump energy.The energy conversion efficiency of the tiled Ti:S amplifier was comparable with a single Ti:S amplifier.The laser pulse having the maximum peak power of 28 TW was obtained after the compressor.Moreover,the influence of the beam gap on the far field was discussed.This novel tiled Ti:S amplifier technique can provide a potential way for 100 PW or EW lasers in the future.
基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02)the Postgraduate Scientifc Research Innovation Project of Hunan Province(No.QL20220007).
文摘In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250µm at the thin end and 56/400μm at the thick end.With a backward-pumping confguration,a maximum single pulse energy of 177.9μJ at a repetition rate of 504 kHz is realized,corresponding to an average power of 89.7 W.Through partially compensating for the accumulated nonlinear phase during the amplifcation process via adjusting the high order dispersion of the stretching chirped fber Bragg grating,the duration of the amplifed pulse is compressed to 401 fs with a pulse energy of 126.3μJ and a peak power of 207 MW,which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fber laser.At the highest energy,the polarization extinction ratio and the M2 factor were respectively measured to be~19 dB and 1.20.In addition,the corresponding intensity noise properties as well as the short-and long-term stability were also examined,verifying a stable operation of the system.It is believed that the demonstrated laser source could fnd important applications in,for example,advanced manufacturing and photomedicine.
基金partially supported by the National Natural Science Foundation of China(Nos.62075126 and 62005161)the Chenguang Program。
文摘We report on a grating-free fiber chirped pulse amplifier(CPA)at 2.8μm for the first time.The CPA system adopted Er:ZBLAN fiber with large anomalous dispersion as the stretcher and germanium(Ge)rods as the compressor with a compact structure.High-energy picosecond pulses of 2.07μJ were generated at the repetition rate of 100 kHz.Using highly dispersive Ge rods,the amplified pulses were compressed to 408 fs with a pulse energy of 0.57μJ,resulting in a peak power of approximately 1.4 MW.A spectral broadening phenomenon in the main amplifier was observed,which was caused by the special gain shape of the Er:ZBLAN fiber amplifier in operation and confirmed by our numerical simulation.This compact fiber CPA system at 2.8μm will be practical and meaningful for application fields.
基金This work was supported by the National Natural Sci-ence Foundation of China under(No.60278013). the team Project of Natural Science Foundation of Guang-dong Province(No.20003061), the Foundation of National High Technology Development Program
文摘The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively. Through the qualitative investigation of the paraxial approximation condition, we show there are chirp-induced changes in the nonparaxial propagation of the chirped pulsed beam. A quantitative nonparaxial correction was developed by use of the perturbational technic and the Fourier transform for a few-cycle chirped pulsed beam with relative small chirp parameter. It was shown that the nonparaxial corrections were enhanced near the leading or trailing edge of pulse depending on weather the chirp parameter is positive or negative. An example for pulsed Gaussian beam driven by a chirped Gaussian pulse is shown in the numerical result to confirm our analysis.
基金This research was sponsored by the Research Council of Lithuania under contract S-MIP-21-30.Two of the authors are grateful for NATO SPS G5734 fellowships.
文摘We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse amplifier provides more than 10 mJ,approximately 1.2 ps pulses at 1030 nm to pump a three-stage optical parametric chirped pulse amplifier(OPCPA)based on bismuth borate crystals and to drive the supercontinuum seed in the YAG crystal.The energy of the amplified pulses in the wavelength range of 1.95–2.4μm reached 2.25 mJ with a pump-tosignal conversion efficiency of approximately 25%in the last OPCPA stage.These pulses were compressed to 38 fs in a pair of Suprasil 300 glass prisms.
基金supported in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYLX16_0367)the National Natural Science Foundation of China(Nos.62071226 and 61971372)+1 种基金the Hong Kong Scholar Program(No.G-YZ2S)HK RGC GRF(No.15200718)。
文摘A broadband instantaneous multi-frequency measurement system based on chirped pulse compression,which potentially has a sub-megahertz(MHz)accuracy and a hundred-gigahertz(GHz)measurement range,is demonstrated.A signalunder-test(SUT)is converted into a carrier-suppressed double-sideband(CS-DSB)signal,which is then combined with an optical linearly frequency-modulated signal having the sweeping range covering the+1 st-order sideband of the CSDSB signal.With photodetection,low-pass filtering,and pulse compression,accurate frequencies of the SUT are obtained via locating the correlation peaks.In the experiment,single-and multi-frequency measurements with a measurement range from 3 to 18 GHz and a measurement accuracy of<±100 MHz are achieved.
文摘We demonstrate a high-contrast, joule-level Nd:glass laser system operating at 0.5 Hz repetition rate based on a double chirped pulse amplification(CPA) scheme. By injecting high-contrast, high-energy seed pulses into the Nd:glass CPA stage, the pulse energy is amplified to 1.9 J through two optical parametric CPA stages and two Nd:glass amplifiers. The temporal contrast of compressed pulse is measured down to the level of 10^(-8)at tens of ps, and 10^(-10) near 200 ps before the main pulse, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No 60878008)the Natural Science Foundation of Shanxi Province of China (Grant No 2008012002-1)
文摘This paper studies the interactions between two and more adjacent chirped soliton-like pulses, respectively. The results show that the pulses present strong interactions when the separations between them are smaller than a certain value,and their behaviour is very distinct under different conditions,such as a different number of pulses or different initial separations between them.Furthermore,we also study the suppression of these interactions and obtain very good effects by using different initial amplitude ratios.
基金supported by the National Natural Science Foundation of China (Grant No.60890202)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20110161110012)+1 种基金the Department of Science and Technology of Hunan Province (Grant No.2011FJ3121)the Fundamental Research Funds for the Central Universities,Hunan University and SRF for ROCS,SEM
文摘We present the performance of a high-power Nd:glass laser system,which produces a 1.1 J,250 fs,7.3 nm broadband laser pulse based on the combination of optical parametric amplification(OPA) and chirped pulse amplification(CPA).The two-stage OPA provides broadband seed pulses for the three-stage Nd:glass amplifiers based on the technology of CPA.Compared to the conventional oscillator seed source,the most important advantage of such a seed source supplied by the two-stage OPA is that it possesses the capacities of broad bandwidth and high energy.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774039)
文摘Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon △n=-1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results.
基金the National Natural Science Foundation of China(Grant Nos.11865014,11765017,11764039,11475027,11274255,and 11305132)the Natural Science Foundation of Gansu Province of China(Grant No.17JR5RA076)+2 种基金the Scientific Research Project of Gansu Higher Education of China(Grant No.2016A-005)the Natural Science Foundation of Education Department of Guizhou Province of China(Grant No.Qianjiaohe-KY-[2017]301)the Science and Technology Project of Guizhou Province of China(Grant No.Qiankehe-LH-[2017]7008).
文摘We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.