期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Using PEG as Progen to Preparate Chitosan Scaffold for Tissue Engineering
1
作者 Li Qin-hua Chen Jian-su 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第3期134-138,共5页
Tissue engineering basically made up growing the relevant cell in vitro and extracellular matrix. A major goal of tissue engineering is to preparate porous three dimension scaffold for cell proliferate, migrate, diffe... Tissue engineering basically made up growing the relevant cell in vitro and extracellular matrix. A major goal of tissue engineering is to preparate porous three dimension scaffold for cell proliferate, migrate, differention and to form the structure of desirable tissue and organ. In this study, the effects of various content and macromolecular weight of PEG to chitosan were investigated and evaluated. The pore morphology of chitosan was controlled by changing the concentration and macromolecular weight of PEG. Chitosan porous scaffold has interconecting porosity. The pore morphology can be controlled with varying PEG concentration and macromolecular weight. The pore size is between 10~50 urn, the degree of swelling in water is 85.70 % . 展开更多
关键词 chitosan scaffolds POROGEN Pore morphology
下载PDF
Collagen-chitosan scaffold impregnated with bone marrow mesenchymal stem cells for treatment of traumatic brain injury 被引量:9
2
作者 Feng Yan Ming Li +7 位作者 Hong-Qi Zhang Gui-Lin Li Yang Hua Ying Shen Xun-Ming Ji Chuan-Jie Wu Hong An Ming Ren 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1780-1786,共7页
Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were pr... Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were prepared by a freeze-drying method based on brain tissue engineering.The scaffolds were impregnated with rat bone marrow mesenchymal stem cells.A traumatic brain injury rat model was established using the 300 g weight free fall impact method.Bone marrow mesenchymal stem cells/collagen-chitosan scaffolds were implanted into the injured brain.Modified neurological severity scores were used to assess the recovery of neurological function.The Morris water maze was employed to determine spatial learning and memory abilities.Hematoxylin-eosin staining was performed to measure pathological changes in brain tissue.Immunohistochemistry was performed for vascular endothelial growth factor and for 5-bromo-2-deoxyuridine(BrdU)/neuron specific enolase and BrdU/glial fibrillary acidic protein.Our results demonstrated that the transplantation of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds to traumatic brain injury rats remarkably reduced modified neurological severity scores,shortened the average latency of the Morris water maze,increased the number of platform crossings,diminished the degeneration of damaged brain tissue,and increased the positive reaction of vascular endothelial growth factor in the transplantation and surrounding areas.At 14 days after transplantation,increased BrdU/glial fibrillary acidic protein expression and decreased BrdU/neuron specific enolase expression were observed in bone marrow mesenchymal stem cells in the injured area.The therapeutic effect of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds was superior to stereotactic injection of bone marrow mesenchymal stem cells alone.To test the biocompatibility and immunogenicity of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds,immunosuppressive cyclosporine was intravenously injected 12 hours before transplantation and 1-5 days after transplantation.The above indicators were similar to those of rats treated with bone marrow mesenchymal stem cells and collagen-chitosan scaffolds only.These findings indicate that transplantation of bone marrow mesenchymal stem cells in a collagen-chitosan scaffold can promote the recovery of neuropathological injury in rats with traumatic brain injury.This approach has the potential to be developed as a treatment for traumatic brain injury in humans.All experimental procedures were approved by the Institutional Animal Investigation Committee of Capital Medical University,China(approval No.AEEI-2015-035)in December 2015. 展开更多
关键词 nerve REGENERATION STEM CELLS COLLAGEN chitosan scaffolds traumatic BRAIN injury bone MARROW mesenchymal STEM CELLS BRAIN tissue engineering neural REGENERATION
下载PDF
Methods of <i>N</i>-acetylated chitosan scaffolds and its <i>In-vitro</i>biodegradation by lysozyme
3
作者 Thazin Han Nitar Nwe +2 位作者 Tetsuya Furuike Seiichi Tokura Hiroshi Tamura 《Journal of Biomedical Science and Engineering》 2012年第1期15-23,共9页
Generally, the lysozyme degradation on chitosan (CTS) is slower than that of chitin (CT). The CTS can be fabricated in scaffold form but it is difficult to fabricate CT scaffold under mild conditions. The method for t... Generally, the lysozyme degradation on chitosan (CTS) is slower than that of chitin (CT). The CTS can be fabricated in scaffold form but it is difficult to fabricate CT scaffold under mild conditions. The method for the preparation of scaffold from N-acetylated CTS (N-CTS) was investigated in this research. By using this method, the scaffolds could be fabricated chitosan to chitin with the degree of acetylation (DA) 18% - 70%. Among these scaffolds, the highest degradation of scaffold by lysozyme was observed on the N-CTS scaffold with DA 60%, which determined by examination of the reducing end contents in the degradation media and by measuring the weight loss of scaffolds. Moreover, the best condition for the degradation of N-CTS scaffold with DA70% by lysozyme was also investigated. The maximum degradation rate of the scaffold was observed on the treatment with lysozyme 500 mg/l of acetate buffer at pH 4.5, 37°C, 100 rpm and for 7 days. 展开更多
关键词 N-Acetylated chitosan scaffold LYSOZYME Degradation
下载PDF
Influence of chitosan nanofiber scaffold on porcine endogenous retroviral expression and infectivity in pig hepatocytes 被引量:3
4
作者 Bing Han Xiao-Lei Shi +6 位作者 Jiang-Qiang Xiao Yue Zhang Xue-Hui Chu Jin-Yang Gu Jia-Jun Tan Zhong-Ze Gu Yi-Tao Ding 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第22期2774-2780,共7页
AIM: To investigate the influence of chitosan nanofiber scaffold on the production and infectivity of porcine endogenous retrovirus (PERV) expressed by porcine hepatocytes. METHODS: Freshly isolated porcine hepatocyte... AIM: To investigate the influence of chitosan nanofiber scaffold on the production and infectivity of porcine endogenous retrovirus (PERV) expressed by porcine hepatocytes. METHODS: Freshly isolated porcine hepatocytes were cultured with or without chitosan nanofiber scaffold (defined as Nano group and Hep group) for 7 d. The daily collection of culture medium was used to detect reverse transcriptase (RT) activity with RT activity assaykits and PERV RNA by reverse transcription-polymerase chain reaction (PCR) and real time PCR with the PERV specific primers. And Western blotting was performed with the lysates of daily retrieved cells to determine the PERV protein gag p30. Besides, the in-vitro infectivity of the supernatant was tested by incubating the human embryo kidney 293 (HEK293) cells. RESULTS: The similar changing trends between two groups were observed in real time PCR, RT activity assay and Western blotting. Two peaks of PERV expression at 10H and Day 2 were found and followed by a regular decline. No significant difference was found between two groups except the significantly high level of PERV RNA at Day 6 and PERV protein at Day 5 in Nano group than that in Hep group. And in the in-vitro infection experiment, no HEK293 cell was infected by the supernatant. CONCLUSION: Chitosan nanofiber scaffold might prolong the PERV secreting time in pig hepatocytes but would not obviously influence its productive amount and infectivity, so it could be applied in the bioartificial liver without the increased risk of the virus transmission. 展开更多
关键词 chitosan nanofiber scaffold Porcine hepatocyte Porcine endogenous retrovirus Bioartificial liver
下载PDF
Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke 被引量:5
5
作者 Feng Yan Wei Yue +5 位作者 Yue-lin Zhang Guo-chao Mao Ke Gao Zhen-xing Zuo Ya-jing Zhang Hui Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1421-1426,共6页
In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone int... In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi- tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the iscbemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-spe- cific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi- tosan-collagen scaffold has a neuroprotective effect following ischemic stroke. 展开更多
关键词 nerve regeneration ischemic stroke chitosan-collagen scaffold bone marrow mesenchymalstem cells cell transplantation cell differentiation neurological function neural regeneration
下载PDF
Fabrication and Evaluation of Porous Keratin/chitosan(KCS) Scaffolds for Effectively Accelerating Wound Healing 被引量:2
6
作者 TAN Hong Bo WANG Fu You +7 位作者 DING Wei ZHANG Ying DING Jing CAI Di Xin YU Kai Fu YANG Jun YANG Liu XU Yong Qing 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第3期178-189,共12页
Objective To develop a dressing with desired antibacterial activity, good water maintaining ability and mechanical properties for wound healing and skin regeneration. Methods The chitosan with different concentrations... Objective To develop a dressing with desired antibacterial activity, good water maintaining ability and mechanical properties for wound healing and skin regeneration. Methods The chitosan with different concentrations were added in keratin solution to form porous keratin/chitosan(KCS) scaffolds. The morphological characteristics, chemical composition, wettability, porosity, swelling ratio and degradation of the scaffolds were evaluated. The antibacterial activity was tested by using S. aureus and E. coli suspension for 2 h. And L929 fibroblast cells culture was used to evaluate the cytotoxicity of the KCS scaffolds. Results The adding of chitosan could increase the hydrophobicity, decrease porosity, swelling ratio and degradation rate of the KCS porous scaffolds. Mechanical properties of KCS scaffolds could be enhanced and well adjusted by chitosan. KCS scaffolds could obviously decrease bacteria number. The proliferation of fibroblast cells in porous KCS patch increased firstly and then decreased with the increase of chitosan concentration. It was appropriate to add 400 μg/m L chitosan to form porous KCS scaffold for achieving best cell attachment and proliferation compared with other samples. Conclusion The porous KCS scaffold may be used as implanted scaffold materials for promoting wound healing and skin regeneration. 展开更多
关键词 Keratin chitosan Porous scaffold Wound healing Skin regeneration
下载PDF
Biomimetic Mineralizated and Nano-Ag Loadedgraphene Oxide/Chitosan Hybrid Scaffold for Osteoinduction and Antibacterium
7
作者 XIE Chaoming LU Xiong JIANG Lili 《矿物学报》 CAS CSCD 北大核心 2013年第S1期114-114,共1页
Graphene oxide (GO) is a graphene derivatives that has oxygen-containing functional groups on the graphene basal plane, such as hydroxyl, carbonyl, epoxy and carboxyl groups. GO is considered as a promising material f... Graphene oxide (GO) is a graphene derivatives that has oxygen-containing functional groups on the graphene basal plane, such as hydroxyl, carbonyl, epoxy and carboxyl groups. GO is considered as a promising material for biological applications owing to its excellent surface functionalizability, high specific suface area and good biocompatibility. In this study, GO/chitosan hybrid scaffolds were prepared for tissue engineering. Nano silver was loaded into the scaffold to improve its antibacterial ability and biomimetic Ca-P coatings were deposited on the scaffold surface to enhance its osteoconductivity. First, GO was prepared by the chemical oxidization of graphite. Secondly, nano-Ag loaded GO was prepared by chemical reducing Ag ions in GO solutions. Then, nano-Ag loaded GO solution was mixed with CS solution to form GO-CS gel. Chitosan (CS) and GO were crosslinked by electrostatic interactions between oxygen-containing functional groups of GO and NH2 groups of CS. The gel were freeze dried to produce nano-Ag loaded GO/CS hybrid porous scaffolds. Finally, the as-prepared scaffolds were immersed the into a supersaturated calcium phosphate solution (SCPS) for 7 days to deposite CaP coatings on the surface of the micropores. SEM images showed that nano-Ag uniformly distributed in the scaffold and the CaP covered most of the scaffold surfaces. In vitro cell culture and antimicrobial test indicated the biomimetic mineralized Ag-CS-GO scaffolds have good osteoconductivity and bactericidal ability. 展开更多
关键词 graphene oxide chitosan scaffold BIOMIMETIC CaP coatings nano-Ag
下载PDF
In vitro and in vivo Characterization of Homogeneous Chitosan-based Composite Scaffolds
8
作者 LI Hong ZHOU Changren +2 位作者 ZHU Minying TIAN Jinhuan RONG Jianhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期100-106,共7页
With a homogeneous distribution of hydroxyapatite (HAP) crystals in polymer matrix, composite scaffolds chitosan/HAP and chitosanJcollagen/HAP were fabricated in the study. XRD, SEM and EDX were used to characterize... With a homogeneous distribution of hydroxyapatite (HAP) crystals in polymer matrix, composite scaffolds chitosan/HAP and chitosanJcollagen/HAP were fabricated in the study. XRD, SEM and EDX were used to characterize their components and structure, in vitro cell culture and in vivo animal tests were used to evaluate their biocompatibility. HAP crystals with rod-like shape embeded in chitosan scaffold, while HAP fine-granules bond with collagen/chitosan scaffold compactly. A homogenous distribution of Ca and P elements both in chitosan/HAP scaffold and chitosan/collagen/HAP scaffold was defined by EDX pattern. The presence of collagen brought a more homogenous distribution of HAP due to its higher ability to induce HAP precipitation. The results of in vitro cell culture showed that the composite's biocompatibility was enhanced by the homogenous distribution of HAP. In vivo animal studies showed that the in vivo biodegradation was effectively improved by the addition of HAP and collagen, and was less influenced by the homogeneous distribution of HAP when compared with a concentrated distribution one. The composite scaffolds with a homogeneous HAP distribution would be excellent alternative scaffolds for bone tissue engineering. 展开更多
关键词 chitosan HYDROXYAPATITE scaffold COLLAGEN CHARACTERIZATION
下载PDF
Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats 被引量:11
9
作者 Zi-ang Yao Feng-jia Chen +3 位作者 Hong-li Cui Tong Lin Na Guo Hai-ge Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期502-509,共8页
Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradab... Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradability, and are suitable to assist the recovery of damaged tissues, such as skin, bone and nerve. Chitosan scaffolds, sodium alginate scaffolds and chitosan-sodium alginate scaffolds were separately transplanted into rats with spinal cord hemisection. Basso-Beattie-Bresnahan locomotor rating scale scores and electrophysiological results showed that chitosan scaffolds promoted recovery of locomotor capacity and nerve transduction of the experimental rats.Sixty days after surgery, chitosan scaffolds retained the original shape of the spinal cord. Compared with sodium alginate scaffolds- and chitosan-sodium alginate scaffolds-transplanted rats, more neurofilament-H-immunoreactive cells (regenerating nerve fibers) and less glial fibrillary acidic protein-immunoreactive cells (astrocytic scar tissue) were observed at the injury site of experimental rats in chitosan scaffold-transplanted rats. Due to the fast degradation rate of sodium alginate, sodium alginate scaffolds and composite material scaffolds did not have a supporting and bridging effect on the damaged tissue. Above all, compared with sodium alginate and composite material scaffolds, chitosan had better biocompatibility, could promote the regeneration of nerve fibers and prevent the formation of scar tissue,and as such, is more suitable to help the repair of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury chitosan sodium alginate functional recovery scaffold neurofilament-H glial fibrillary acidic protein scar tissue locomotor capacity neural regeneration
下载PDF
Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration
10
作者 Hong Li Chang-Ren Zhou +2 位作者 Min-Ying Zhu Jin-Huan Tian Jian-Hua Rong 《Journal of Biomaterials and Nanobiotechnology》 2010年第1期42-49,共8页
Hydroxyapatite(HAP)/Chitosan(CS) composite is a biocompatible and bioactive material for tissue engineering. A novel homogeneous HAP/CS composite scaffold was developed via lyophilization and in situ hydration. A mode... Hydroxyapatite(HAP)/Chitosan(CS) composite is a biocompatible and bioactive material for tissue engineering. A novel homogeneous HAP/CS composite scaffold was developed via lyophilization and in situ hydration. A model CS solution with a Ca/P atom ratio of 1.67 was prepared through titration and stirring so as to attain a homogeneous dispersion of HAP particles. After lyophilization and in situ hydration, rod-shaped HAP particles (5 μm in diameter) within the CS matrix homogeneously scattered at the pore wall of the CS scaffold. X-ray diffraction (XRD) and Fouri-er-Transformed Infrared spectroscopy (FTIR) confirmed the formation of HAP crystals. The compressive strength in the composite scaffold indicated a significant increment over a CS-only scaffold. Bioactivity in vitro was completed by immersing the scaffold in simulated body fluid (SBF), and the result suggested that there was an increase in apatite formation on the HAP/CS scaffolds. Biological in vivo cell culture with MC 3T3-E1 cells for up to 7 days demonstrated that a homogeneous incorporation of HAP particles into CS scaffold led to higher cell viability compared to that of the pure CS scaffold or the HAP/CS scaffold blended. The results suggest that the homogeneous composite scaffold with better strength, bioactivity and biocompatibility can be prepared via in vitro hydration, which may serve as a good scaffold for bone tissue engineering. 展开更多
关键词 HYDROXYAPATITE chitosan scaffold Composite HYDRATION
下载PDF
FERROFERRIC OXIDE/CHITOSAN SCAFFOLDS WITH THREE-DIMENSIONAL ORIENTED STRUCTURE
11
作者 胡巧玲 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2012年第3期436-442,共7页
A facile approach to construct ferroferric oxide/chitosan composite scaffolds with three-dimensional oriented structure has been explored in this research. Chitosan and ferroferric oxide are co-precipitated by using a... A facile approach to construct ferroferric oxide/chitosan composite scaffolds with three-dimensional oriented structure has been explored in this research. Chitosan and ferroferric oxide are co-precipitated by using an in situ precipitation method, and then lyophilized to get the composite scaffolds. XRD indicated that Fe304 was generated during the gel formation process, and increasing the content of magnetic particles could destruct the crystal structure of chitosan. When the content of magnetic particles is lower than 10%, the layer-by-layer structure and wheel spoke structure are coexisting in the scaffolds. Increasing the content of magnetic particles, just layer-by-layer structure could be observed in the scaffolds. Ferroferric oxide particles were uniformly distributed in the matrix, the size of which was about 0.48 gm in diameter, 2 gm in length. Porosity of magnetic chitosan composite scaffolds is about 90%. When the ratio of ferroferric oxide to chitosan is 5/100, the compressive strength of the material is 0.4367 MPa, which is much higher than that of pure chitosan scaffolds, indicating that the layer-by-layer and wheel spokes complex structure is beneficial for the improvement of the mechanical properties of chitosan scaffolds. However, increasing the content of ferroferric oxide, the compressive strength of scaffolds decreased, because of the decreasing of chitosan crystallization and aggregation of magnetic particles as stress centralized body. Another reason is that the layer-by-layer and wheel spokes complex structure makes bigger contributions for the compressive strength than the layer-by-layer structure does. Three-dimensional ferroferric oxide/chitosan scaffolds could be used as hyperthermia generator system, improving the local circulation of blood, promoting the aggradation of calcium salt and stimulating bone tissue regeneration. 展开更多
关键词 chitosan Ferroferric oxide scaffold Three-dimensional oriented structure.
原文传递
VE TPGS-Loaded Silk Fibroin / Hydroxybutyl Chitosan Nanofibrous Scaffolds for Skin Care Application
12
作者 周远南 梁文浩 +4 位作者 阮标鹏 姜芳 王维汉 张葵花 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期533-537,共5页
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene gly... Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds. 展开更多
关键词 vitamin Etocopherol polyethylene glycol 1000 succinate(VE TPGS) silk fibroin(SF) /hydroxybutyl chitosan(HBC) nanofibrous scaffolds resistance to oxidation biocompatibility
下载PDF
Electrospun Chitosan( CS)/Poly( L-lactic-co-ε-caprolactone)( PLCL ) Nanofibers and Their Potential as Small-Diameter Vascular Scaffold 被引量:1
13
作者 TAO Ling WANG Weizhong +4 位作者 LIU Dinghua DU Haibo ZHANG Qianqian CHEN Liang HE Chuanglong 《Journal of Donghua University(English Edition)》 EI CAS 2018年第1期32-37,共6页
The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers w... The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers were developed for potential small-diameter blood vessel applications. CS is a positively charged polymer which is beneficial for cell attachment and growth,while PLCL provides favorable mechanical support due to its excellent elasticity. Typical nanofibrous structure was observed in both CS/PLCL and pure PLCL scaffolds. The optimal mechanical property could be achieved when the weight ratio of CS/PLCL was 1 ∶ 2.Compared with pure PLCL scaffolds, the CS/PLCL scaffolds showed higher hydrophilicity and markedly promoted the attachment,spreading and proliferation of human umbilical vein endothelial cells( HUVECs). Hence,CS/PLCL scaffolds can be used as potential vascular grafts. 展开更多
关键词 electrospinning chitosan(CS) ploy(L-lactic-co-ε-caprolactone)(PLCL) vascular scaffolds
下载PDF
壳聚糖治疗牙周病的研究进展
14
作者 温星悦 赵骏宇 +2 位作者 赵崇钧 王贵欣 黄睿洁 《国际口腔医学杂志》 CAS CSCD 北大核心 2024年第4期416-424,共9页
壳聚糖是迄今为止发现的唯一天然存在的阳离子多糖,因具有良好的生物相容性、生物降解性、抗菌、抗炎、抗癌、组织修复活性和巨大载药能力等优点,在组织工程中逐渐受到重视。作为一种炎症破坏性疾病,牙周病发病率高且对口腔健康乃至全... 壳聚糖是迄今为止发现的唯一天然存在的阳离子多糖,因具有良好的生物相容性、生物降解性、抗菌、抗炎、抗癌、组织修复活性和巨大载药能力等优点,在组织工程中逐渐受到重视。作为一种炎症破坏性疾病,牙周病发病率高且对口腔健康乃至全身健康都有重大影响。本文总结了壳聚糖在牙周治疗中的再生支架、药物递送、抗菌作用、抗炎和促进血管生成作用等,分析了目前存在的问题,指出了未来可能的发展方向,旨在为牙周病的治疗提供新思路。 展开更多
关键词 牙周病 壳聚糖 多向支架 药物递送 抗菌
下载PDF
壳聚糖支架在周围神经修复中的应用研究进展
15
作者 衣振伟 林浩东 赵黎明 《功能高分子学报》 CAS CSCD 北大核心 2024年第3期251-261,共11页
天然高分子材料壳聚糖具有生物相容性好、降解行为安全和免疫原性低等优点,被广泛应用于组织工程的多个领域。在神经组织工程中,利用壳聚糖构建不同形式神经工程支架,模拟周围神经天然结构、引导缺损神经再生已成为当前周围神经修复的... 天然高分子材料壳聚糖具有生物相容性好、降解行为安全和免疫原性低等优点,被广泛应用于组织工程的多个领域。在神经组织工程中,利用壳聚糖构建不同形式神经工程支架,模拟周围神经天然结构、引导缺损神经再生已成为当前周围神经修复的主要研究方向。本文综述了不同形式壳聚糖支架(水凝胶、薄膜、微球、导管)在周围神经损伤修复中的应用及研究进展,并对存在的问题和未来研究方向进行了探讨,为促进壳聚糖神经组织工程支架的研究和临床应用提供了思路。 展开更多
关键词 壳聚糖 组织工程 支架 周围神经 再生
下载PDF
缓释万古霉素三维支架修复兔感染性骨软骨缺损
16
作者 李兴屿 周杰 +5 位作者 李沙沙 张天喜 郭国宁 喻安永 邓江 叶鹏 《中国组织工程研究》 CAS 北大核心 2024年第22期3509-3516,共8页
背景:大量研究证实组织工程支架几乎可完全修复骨软骨缺损,但当骨软骨缺损合并感染时,即使前期经过彻底的清创,单纯骨软骨组织工程支架的修复效果往往不理想。目的:制备盐酸万古霉素缓释微球丝素蛋白/壳聚糖/纳米羟基磷灰石支架,观察其... 背景:大量研究证实组织工程支架几乎可完全修复骨软骨缺损,但当骨软骨缺损合并感染时,即使前期经过彻底的清创,单纯骨软骨组织工程支架的修复效果往往不理想。目的:制备盐酸万古霉素缓释微球丝素蛋白/壳聚糖/纳米羟基磷灰石支架,观察其对兔股骨远端感染性骨软骨缺损的修复效果。方法:①采用乳化溶剂挥发法制备盐酸万古霉素缓释微球;将不同质量(7.5,10,12.5 mg)的缓释微球分别与丝素蛋白-壳聚糖-纳米羟基磷灰石溶液混合,利用化学交联法制备盐酸万古霉素缓释微球丝素蛋白/壳聚糖/纳米羟基磷灰石支架,表征支架的孔隙率、吸水膨胀率、热水溶失率及体外药物缓释等。②将45只新西兰大白兔随机分为空白组、对照组、实验组,每组15只,均建立右后肢股骨远端骨软骨缺损并感染模型,空白组不作任何处理,对照组缺损处植入丝素蛋白-壳聚糖-纳米羟基磷灰石支架,实验组缺损处植入盐酸万古霉素缓释微球(10 mg)丝素蛋白/壳聚糖/纳米羟基磷灰石支架。术后1周,检测血液样本C-反应蛋白、白细胞水平;术后4,8,12周取术区组织,分别进行大体观察与病理学观察。结果与结论:①随着缓释微球含量的增加,支架的孔隙率降低,组间比较差异有显著性意义(P<0.05);3组支架的孔径大小、吸水膨胀率、热水溶失率比较差异均无显著性意义(P>0.05);3组支架体外均可持续释放盐酸万古霉素达30 d以上。②实验组兔血液样本C-反应蛋白、白细胞水平均低于空白组、对照组(P<0.05);实验组兔术后各时间点的大体软骨修复情况明显好于空白组、对照组;苏木精-伊红、Masson、阿利新蓝及Ⅱ型胶原免疫组化染色显示,实验组兔术后各时间点的骨软骨修复效果明显优于空白组、对照组。③结果表明,盐酸万古霉素缓释微球丝素蛋白/壳聚糖/纳米羟基磷灰石支架能有效促进开放性骨软骨缺损的修复。 展开更多
关键词 载药微球 万古霉素 骨软骨缺损 组织工程 丝素蛋白 壳聚糖 纳米羟基磷灰石 支架
下载PDF
大鼠心肌细胞H9C2多元复合支架的制备及优选
17
作者 刘婕 刘旭 朱小奕 《精准医学杂志》 2024年第4期361-366,共6页
目的制备大鼠心肌细胞H9C2的聚己内酯(PCL)/壳聚糖(CS)多元复合支架,并优选有利于H9C2细胞生长的支架。方法通过静电纺丝法制备PCL/CS支架(支架A)、PCL/CS/氧化锌(ZnO)支架(支架B)、PCL/CS/ZnO/碳纳米管(CNTs)支架(支架C)三种多元复合支... 目的制备大鼠心肌细胞H9C2的聚己内酯(PCL)/壳聚糖(CS)多元复合支架,并优选有利于H9C2细胞生长的支架。方法通过静电纺丝法制备PCL/CS支架(支架A)、PCL/CS/氧化锌(ZnO)支架(支架B)、PCL/CS/ZnO/碳纳米管(CNTs)支架(支架C)三种多元复合支架,采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、热重分析(TG)、拉曼光谱测试等方法验证支架制备是否成功,采用电镜观察及拉伸应力、水接触角、电导率、膨胀率检测等方法评估三种支架的理化特性,采用DAPI染色、电镜观察、CCK-8实验等方法评估三种支架的生物相容性。结果XRD、FTIR、TG、拉曼光谱测试结果显示三种支架制备成功。电镜观察结果显示支架C的纤维直径显著长于支架A、B(F=73.050,t=8.724、9.747,P<0.05);拉伸应力测试结果显示支架B的拉伸应力显著高于支架A、C(F=13.833,t=3.641、3.802,P<0.05);水接触角检测结果显示三种支架皆亲水;电导率测试结果显示支架B、C的电导率显著高于支架A(F=798.780,t=32.155、30.048,P<0.05);膨胀率测试结果显示,在PBS缓冲液中浸泡后,支架A第5小时膨胀率显著高于第0.5小时(F组内=53.103,P<0.05),支架C在第2~5小时中各时间点膨胀率显著高于第0.5小时(F组内=103.748,P<0.05);在第0.5~4小时中各时间点,支架A膨胀率显著高于支架B、C,在第0.5~2小时中各时间点,支架B膨胀率显著高于支架C(F组间=35.226~162.448,P<0.05)。DAPI染色及电镜图像结果显示,在三种支架上培养96 h以后,支架B、C表面H9C2细胞数量较支架A增多。CCK-8实验结果显示,支架A、B、C表面H9C2细胞在第18小时~第5天中各时间点的吸光度值均显著高于第12小时(F组内=37.159~67.083,P<0.05);在第12小时~第5天各时间点,支架C表面H9C2细胞的吸光度值均显著高于支架A、B(F组间=26.039~80.994,P<0.05)。结论大鼠心肌细胞H9C2的多元复合支架符合细胞外基质特征,能够支持心肌细胞生长,其中PCL/CS/ZnO/CNTs支架显示出较高的生物相容性,比纯PCL/CS支架在心脏组织工程中更具应用潜力。 展开更多
关键词 羧甲基纤维素钠 壳聚糖 细胞外基质 组织工程 组织支架 肌细胞 心脏
下载PDF
Aligned carbon nanotube containing scaffolds for neural tissue regeneration
18
作者 Pallavi Gupta Debrupa Lahiri 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1062-1063,共2页
Neuropathologies include the deterioration and damage of the nervous system,especially neurons present in the brain,spinal cord and peripheral nervous system.Damage or alternations in neurons makes their structure and... Neuropathologies include the deterioration and damage of the nervous system,especially neurons present in the brain,spinal cord and peripheral nervous system.Damage or alternations in neurons makes their structure and functionality abnormal.Every year over 90,000 people get affected by neurodegenerative diseases in the USA.Among all the neurological pathologies, 展开更多
关键词 nanotube functionality aligned deterioration regeneration neurological fabricating chitosan scaffold walled
下载PDF
APPLICATION OF CHITOSAN-BASED BIOMATERIALS IN BIOARTIFICIAL LIVE
19
作者 BAO Zhiming PAN Jilun +1 位作者 LI Li YU Yaoting 《Chinese Journal of Reactive Polymers》 2006年第1期90-96,共7页
Bioart,ficial liver support system (BALS) has the potential to provide temporary support for patients with fulminant hepatic failure and consist of viable hepatocytes and scaffolding materials for hepatocytes attach... Bioart,ficial liver support system (BALS) has the potential to provide temporary support for patients with fulminant hepatic failure and consist of viable hepatocytes and scaffolding materials for hepatocytes attachment. Various scaffolding materials are used in BALS, including chitosan, which is easily obtained by deacetylation of chitin and widely applied in biomedical applications. In this paper, we introduce and discuses chitosan-based biomaterials for BALS application. 展开更多
关键词 Bioartificial live Hepatocytes culture chitosan scaffold.
下载PDF
3D打印聚乳酸-纳米羟基磷灰石/壳聚糖/多西环素抗菌支架的性能
20
作者 刘岩 郑雪新 《中国组织工程研究》 CAS 北大核心 2024年第22期3532-3538,共7页
背景:聚乳酸具有良好的生物相容性和生物降解性,成为一种新型的骨科固定材料,然而该材料缺乏细胞识别信号,不利于细胞黏附和成骨分化,限制了其在生物材料中的应用。目的:3D打印聚乳酸-纳米羟基磷灰石/壳聚糖支架,评估其药物缓释及生物... 背景:聚乳酸具有良好的生物相容性和生物降解性,成为一种新型的骨科固定材料,然而该材料缺乏细胞识别信号,不利于细胞黏附和成骨分化,限制了其在生物材料中的应用。目的:3D打印聚乳酸-纳米羟基磷灰石/壳聚糖支架,评估其药物缓释及生物性能。方法:采用熔融沉积技术打印孔隙交互的多孔聚乳酸支架(记为PLA支架),将该支架浸泡于多巴胺溶液中制备聚乳酸-多巴胺支架(记为PLA-DA支架);将纳米羟基磷灰石投入壳聚糖溶液中,然后将PLA-DA支架浸没其中,制备聚乳酸-纳米羟基磷灰石/壳聚糖支架(记为PLA-nHA/CS支架),表征3组支架的微观形貌、孔隙率、水接触角与压缩强度。采用冷冻干燥法制备负载药物多西环素的PLA-nHA/CS支架(记为PLA-nHA/CS-DOX支架),表征其药物释放。将PLA、PLA-DA、PLA-nHA/CS、PLA-nHA/CS-DOX支架分别与MC3T3-E1细胞共培养,检测细胞增殖与成骨分化能力;将不同浓度的金黄色葡萄球菌悬液分别与4组支架共培养,采用抑菌圈实验检测支架的抗菌性能。结果与结论:①扫描电镜下可见PLA、PLA-DA支架表面致密光滑,PLA-nHA/CS支架表面可见纳米羟基磷灰石颗粒;PLA、PLA-DA、PLA-nHA/CS支架的孔隙率逐渐降低,压缩强度逐渐升高,PLA-nHA/CS支架的弹性模量满足松质骨要求;PLA-DA、PLA-nHA/CS支架的水接触角小于PLA支架;PLA-nHA/CS支架体外可持续释放药物达8 d。②CCK-8检测显示,4组支架均未显著影响MC3T3-E1细胞的增殖;PLA-DA组、PLAnHA/CS组、PLA-nHA/CS-DOX组细胞碱性磷酸酶活性均高于PLA组;茜素红染色显示,与PLA组相比,PLA-nHA/CS组、PLA-nHA/CS-DOX组细胞表现出较高的矿化水平。③抑菌圈实验显示PLA、PLA-DA支架无抗菌性能,PLA-nHA/CS支架具有一定的抗菌性能,PLA-nHA/CS-DOX支架具有超强的抗菌性能。④结果表明,PLA-nHA/CS-DOX支架具有良好的药物缓释性能、细胞相容性、促成骨性能及抗菌性能。 展开更多
关键词 3D打印 聚乳酸支架 纳米羟基磷灰石 多巴胺 壳聚糖 抗菌涂层 药物缓释 骨再生
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部